Skip to main content
Log in

Wave Processes in Dusty Plasma near the Mercury’s Surface

  • SPACE PLASMA
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Wave processes in dusty plasma near the surface of Mercury are discussed. The near-surface layers of Mercury’s exosphere have a number of common features with those of the exosphere of the Moon, e.g., there are dust particles above the illuminated side of both cosmic bodies that become positively charged due to the photoelectric effect. Mercury has its own magnetosphere that protects the surface from particles of the solar wind. However, the solar wind can reach the surface of the planet near the magnetic poles. Therefore, dust particles of the same size get different charges depending on their localization above the Mercury’s surface. A drift wave turbulence can appear in dusty plasma in the magnetic field near the Mercury’s surface in the presence of gradient of electron concentration. The solar wind that streams at speeds of about 400 km/s relative to plasma near the surface of the planet can induce longitudinal electrostatic oscillations with frequencies determined by the electron plasma frequency. We analyze wave processes taking into account the difference in parameters at aphelion and perihelion of the Mercury’s orbit, along with the fact whether the dust particles are located near the magnetic poles or far from them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. O. E. Berg, F. F. Richardson, and H. Burton, NASA Report No. SP-330 (NASA, Washington, D.C., 1973). https://www.hq.nasa.gov/alsj/a17/as17psr.pdf.

  2. O. E. Berg, H. Wolf, and J. Rhee, in Interplanetary Dust and Zodiacal Light, Ed. by H. Elsasser and H. Fechtig (Springer, New York, 1976), p. 233.

    Google Scholar 

  3. A. Määttänen, C. Listowski, F. Montmessin, L. Maltagliati, A. Reberac, L. Joly, and J.-L. Bertaux, Icarus 223, 892 (2013).

    Article  ADS  Google Scholar 

  4. A. A. Fedorova, F. Montmessin, A. V. Rodin, O. I. Korablev, A. Määttänen, L. Maltagliati, and J.-L. Bertaux, Icarus 231, 239 (2014).

    Article  ADS  Google Scholar 

  5. F. Montmessin, J. L. Bertaux, E. Quémerais, O. Korablev, P. Rannou, F. Forget, S. Perriera, D. Fussend, S. Lebonnoisc, and A. Rébéraca, Icarus 183, 403 (2006).

    Article  ADS  Google Scholar 

  6. F. Montmessin, B. Gondet, J. P. Bibring, Y. Langevin, P. Drossart, F. Forget, and T. Fouchet, J. Geophys. Res.: Planets 112, 90 (2007).

    Google Scholar 

  7. Yu. N. Izvekova and S. I. Popel, Plasma Phys. Rep. 43, 1172 (2017).

    Article  ADS  Google Scholar 

  8. A. P. Golub’ and S. I. Popel, JETP Lett. 113, 428 (2021).

    Article  ADS  Google Scholar 

  9. A. P. Golub’ and S. I. Popel, Plasma Phys. Rep. 47, 826 (2021).

    Article  ADS  Google Scholar 

  10. A. V. Zakharov, S. I. Popel, I. A. Kuznetsov, N. D. Borisov, E. V. Rosenfeld, Yu. Skorov, and L. M. Zelenyi, Phys. Plasmas 29, 110501 (2022).

  11. S. I. Kopnin, D. V. Shokhrin, and S. I. Popel, Plasma Phys. Rep. 48, 141 (2022).

    Article  ADS  Google Scholar 

  12. D. C. Reuter, A. A. Simon, J. Hair, A. Lunsford, S. Manthripragada, V. Bly, B. Bos, C. Brambora, E. Caldwell, G. Casto, Z. Dolch, P. Finneran, D. Jennings, M. Jhabvala, E. Matson, et al., Space Sci. Rev. 214, 54 (2018).

    Article  ADS  Google Scholar 

  13. S. Watanabe, M. Hirabayashi, N. Hirata, Na. Hirata, R. Noguchi, Y. Shimaki, H. Ikeda, E. Tatsumi, M. Yoshikawa, S. Kikuchi, H. Yabuta, T. Nakamura, S. Tachibana, Y. Ishihara, T. Morota, et al., Science 364, 268 (2019).

    Article  ADS  Google Scholar 

  14. S. Gulkis, M. Frerking, J. Crovisier, G. Beaudin, P. Hartogh, P. Encrenaz, T. Koch, C. Kahn, Y. Salinas, R. Nowicki, R. Irigoyen, M. Janssen, P. Stek, M. Hofstadter, M. Allen, et al., Space Sci. Rev. 128, 561 (2007).

    Article  ADS  Google Scholar 

  15. M. Horányi, Z. Sternovsky, M. Lankton, C. Dumont, S. Gagnard, D. Gathright, E. Grün, D. Hansen, D. James, S. Kempf, B. Lamprecht, R. Srama, J. R. Szalay, and G. Wright, Space Sci. Rev. 185, 93 (2014).

    Article  ADS  Google Scholar 

  16. M. Horányi, J. R. Szalay, S. Kempf, J. Schmidt, E. Grun, R. Srama, and Z. Sternovsky, Nature 522, 324 (2015).

    Article  ADS  Google Scholar 

  17. S. I. Popel, L. M. Zelenyi, A. P. Golub’, and A. Yu. Dubinskii, Planet. Space Sci. 156, 71 (2018).

    Article  ADS  Google Scholar 

  18. D. L. Domingue, P. L. Koehn, R. M. Killen, A. L. Sprague, M. Sarantos, A. F. Cheng, E. T. Bradley, and W. E. McClintock, Space Sci. Rev. 131, 161 (2007).

    Article  ADS  Google Scholar 

  19. N. F. Ness, K. W. Behannon, R. P. Lepping, and Y. C. Whang, J. Geophys. Res. 80, 2708 (1975).

    Article  ADS  Google Scholar 

  20. I. I. Alexeev, E. S. Belenkaya, J. A. Slavin, H. Korth, B. J. Anderson, D. N. Baker, S. A. Boardsen, C. L. Johnson, M. E. Purucker, M. Sarantos, and S. C. Solomon, Icarus 209, 23 (2010).

    Article  ADS  Google Scholar 

  21. S. Stanley and G. A. Glatzmaier, Space Sci. Rev. 152, 617 (2010).

    Article  ADS  Google Scholar 

  22. P. Dyal, C. W. Parkin, and W. D. Daily, Rev. Geophys. Space Phys. 12, 568 (1974).

    Article  ADS  Google Scholar 

  23. P. J. Coleman, Jr., G. Schubert, C. T. Russell, and L. R. Sharp, Moon 4, 419 (1972).

    Article  ADS  Google Scholar 

  24. M. Le Bars, M. A. Wieczorek, Ö. Karatekin, D. Cébron, and M. Laneuville, Nature 479, 215 (2011).

    Article  ADS  Google Scholar 

  25. M. A. Wieczorek, B. P. Weiss, and S. T. Stewart, Science 335, 1212 (2012).

    Article  ADS  Google Scholar 

  26. M. A. Wieczorek, J. Geophys. Res.: Planets 123, 291 (2018).

    Article  ADS  Google Scholar 

  27. D. L. Mitchell, J. S. Halekas, R. P. Lin, S. Frey, L. L. Hood, M. H. Acuña, and A. Binder, Icarus 194, 401 (2008).

    Article  ADS  Google Scholar 

  28. Mariner 10 NASA Mission to Mercury. https://solarsystem.nasa.gov/missions/mariner-10/in-depth/. Cited March 25, 2023.

  29. S. C. Solomon, R. L. McNutt, R. E. Gold, and D. L. Domingue, Space Sci. Rev. 131, 3 (2007).

    Article  ADS  Google Scholar 

  30. BepiColombo Mission to Mercury. https://www.cosmos.esa.int/web/bepicolombo/home. Cited March 25, 2023.

  31. J. Benkhoff, G. Murakami, W. Baumjohann, S. Besse, E. Bunce, M. Casale, G. Cremosese, K.-H. Glassmeier, H. Hayakawa, D. Heyner, H. Hiesinger, J. Huovelin, H. Hussmann, V. Iafolla, L. Iess, et al., Space Sci. Rev. 217, 90 (2021).

    Article  ADS  Google Scholar 

  32. L. M. Prockter, Johns Hopkins APL Tech. Dig. 26, 175 (2005).

    Google Scholar 

  33. W. Exner, S. Simon, D. Heyner, and U. Motschmann, J. Geophys. Res.: Space Phys. 125, e2019JA027691 (2020).

  34. A. L. Broadfoot, D. E. Shemansky, and S. Kumar, Geophys. Res. Lett. 3, 577 (1976).

    Article  ADS  Google Scholar 

  35. A. Potter and T. Morgan, Science 229, 651 (1985).

    Article  ADS  Google Scholar 

  36. T. A. Bida, R. M. Killen, and T. H. Morgan, Nature 404, 159 (2000).

    Article  ADS  Google Scholar 

  37. S. I. Popel, S. I. Kopnin, A. P. Golub’, G. G. Dol’nikov, A. V. Zakharov, L. M. Zelenyi, and Yu. N. Izvekova, Solar System Research 47, 419 (2013).

    Article  ADS  Google Scholar 

  38. S. I. Popel, A. P. Golub’, and L. M. Zelenyi, Phys. Plasmas 30, 043701 (2023).

  39. S. I. Popel, A. P. Golub’, E. A. Lisin, Yu. N. Izvekova, B. Atamaniuk, G. G. Dol’nikov, A. V. Zakharov, and L. M. Zelenyi, JETP Lett. 103, 563 (2016).

    Article  ADS  Google Scholar 

  40. H. Zook and J. McCoy, Geophys. Res. Lett. 18, 2117 (1991).

    Article  ADS  Google Scholar 

  41. T. J. Stubbs, R. R. Vondrak, and W. M. Farrell, Adv. Space Res. 37, 59 (2006).

    Article  ADS  Google Scholar 

  42. Z. Sternovsky, P. Chamberlin, M. Horanyi, S. Robertson, and X. Wang, J. Geophys. Res.: Space Phys. 113, A10104 (2008).

  43. T. J. Stubbs, D. A. Glenar, W. M. Farrell, R. R. Vondrak, M. R. Collier, J. S. Halekas, and G. T. Delory, Planet. Space Sci. 59, 1659 (2011).

    Article  ADS  Google Scholar 

  44. Yu. N. Izvekova, T. I. Morozova, and S. I. Popel, IEEE Trans. Plasma Sci. 46, 731 (2018).

    Article  ADS  Google Scholar 

  45. T. I. Morozova, S. I. Kopnin, and S. I. Popel, Plasma Phys. Rep. 41, 799 (2015).

    Article  ADS  Google Scholar 

  46. S. I. Popel and T. I. Morozova, Plasma Phys. Rep. 43, 566 (2017).

    Article  ADS  Google Scholar 

  47. S. I. Popel, A. I. Kassem, Yu. N. Izvekova, and L. M. Zelenyi, Phys. Lett. A 384, 126627 (2020).

  48. S. I. Kopnin and S. I. Popel, Tech. Phys. Lett. 47, 455 (2021).

    Article  ADS  Google Scholar 

  49. Yu. N. Izvekova and S. I. Popel, Plasma Phys. Rep. 48, 1199 (2022).

    Article  ADS  Google Scholar 

  50. E. Walbridge, J. Geophys. Res. 78, 3668 (1973).

    Article  ADS  Google Scholar 

  51. S. I. Popel, A. P. Golub’, Yu. N. Izvekova, V. V. Afonin, G. G. Dol’nikov, A. V. Zakharov, L. M. Zelenyi, E. A. Lisin, and O. F. Petrov, JETP Lett. 99, 115 (2014).

    Article  ADS  Google Scholar 

  52. R. F. Willis, M. Anderegg, B. Feuerbacher, and B. Fitton, in Photon and Particle Interactions with Surfaces in Space: Proceedings of the 6th Eslab Symposium, Held at Noordwijk, the Netherlands, September 26–29, 1972, Ed. by R. J. L. Grard (Springer, Houten, 1973), p. 389.

  53. E. M. Lifshitz and L. P. Pitaevskii, Course of Theoretical Physics, Vol. 10: Physical Kinetics (Fizmatlit, Moscow, 2002; Butterworth-Heinemann, Oxford, 2002).

  54. S. I. Popel, G. E. Morfll, P. K. Shukla, and H. Thomas, J. Plasma Phys. 79, 1071 (2013).

    Article  ADS  Google Scholar 

  55. A. González-Esparza, Space Sci. Rev. 97, 197 (2001).

    Article  ADS  Google Scholar 

  56. N. N. Rao, P. K. Shukla, and M. Y. Yu, Planet. Space Sci. 38, 543 (1990).

    Article  ADS  Google Scholar 

  57. S. I. Popel, L. M. Zelenyi, and B. Atamaniuk, Phys. Plasmas 22, 123701 (2015).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. N. Izvekova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Izvekova, Y.N., Popel, S.I. & Golub’, A.P. Wave Processes in Dusty Plasma near the Mercury’s Surface. Plasma Phys. Rep. 49, 912–919 (2023). https://doi.org/10.1134/S1063780X23600585

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X23600585

Keywords:

Navigation