Skip to main content
Log in

Dusty plasma at the surface of the moon

  • Published:
Solar System Research Aims and scope Submit manuscript

Abstract

A theoretical model that provides a self-consistent description of the concentrations of photoelectrons and dust particles located over the illuminated part of the lunar surface is presented. The model takes account of the observation point location and the effects of production of photoelectrons at the surfaces of the Moon and dust particles, the dynamics of dust particles in the electric and gravitational fields, and the charging of dust particles through their interaction with the solar radiation photons, the solar wind electrons and ions, photoelectrons, etc. An expression that describes the distribution of photoelectrons over the illuminated part of the lunar surface is obtained. The size and elevation distributions of the charged dust particles located over the illuminated part of the lunar surface are calculated for different angles between the local normal and the direction to the Sun. It is shown that no substantial restrictions are imposed on the choice of the landing site for future lunar spacecraft missions aimed at studying the near-surface dust on the Moon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adushkin, V.V., Pernik, L.M., and Popel, S.I., Nanoparticles in experiments on destruction of rocks by explosion, Doklady Earth Sciences, 2007, vol. 415, no. 2, pp. 820–822.

    Article  ADS  Google Scholar 

  • Arnas, C., Mikikian, M., and Doveil, F., High negative charge of a dust particle in a hot cathode discharge, Phys. Rev. E, 1999, vol. 60, pp. 7420–7425.

    Article  ADS  Google Scholar 

  • Arnas, C., Mikikian, M., Bachet, G., and Doveil, F., Sheath modification in the presence of dust particles, Phys. Plasmas, 2000, vol. 7, p. 4418–4422.

    Article  ADS  Google Scholar 

  • Colwell, J.E., Batiste, S., Horányi, M., et al., The lunar surface: dust dynamics and regolith mechanics, Rev. Geophys., 2007, vol. 45, p. RG2006.

    Article  ADS  Google Scholar 

  • Colwell, J.E., Robertson, S., Horányi, M., et al., Lunar dust levitation, J. Aerospace Eng., 2009, vol. 22, no. 1, pp. 2–9.

    Article  Google Scholar 

  • Fortov, V.E., Ivlev, A.V., Khrapak, S.A., et al., Complex (dusty) plasmas: current status, open issues, perspectives, Phys. Rep., 2005, vol. 421, nos. 1–2, pp. 1–103.

    Article  MathSciNet  ADS  Google Scholar 

  • Glenar, D.A., Stubbs, T.J., McCoy, J.E., and Vondrak, R.R., A reanalysis of the Apollo light scattering observations, and implications for lunar exospheric dust, Planet. Space Sci., 2011, vol. 59, no. 14, pp. 1695–1707.

    Article  ADS  Google Scholar 

  • Golub’, A.P., Dol’nikov, G.G., Zakharov, A.V., et al., Dusty plasma system in the surface layer of the illuminated part of the Moon, JETP Lett., 2012, vol. 95, no. 4, pp. 182–187.

    Article  ADS  Google Scholar 

  • Grard, R.J.L. and Tunaley, J.K.E., Photoelectron sheath near a planetary probe in interplanetary space, J. Geophys. Res., 1971, vol. 76, pp. 2498–2505.

    Article  ADS  Google Scholar 

  • Hinteregger, H.E., Absolute intensity measurements in the extreme ultraviolet spectrum of solar radiation, Space Sci. Rev., 1965, vol. 4, pp. 461–497.

    Article  ADS  Google Scholar 

  • Ivanov-Kholodnyi, G.S. and Firsov, V.V., Short waves radiation of the Sun being under different levels of activity, Geomagn. Aeron., 1974, vol. 14, no. 3, pp. 393–398.

    Google Scholar 

  • Kolesnikov, E.K. and Manuilov, A.S., The way to calculate electrostatic field intensity above lunar surface covered by hydrogen monolayer, Astron. Zh., 1982, vol. 59, no. 5, pp. 996–998.

    ADS  Google Scholar 

  • Kolesnikov, E.K. and Yakovlev, A.B., Condition for the electrostatic levitation of lunar-regolith microparticles, Solar Syst. Res., 1997, vol. 31, no. 1, pp. 62–64.

    ADS  Google Scholar 

  • Losseva, T.V., Popel, S.I., Golub’, A.P., et al., Weakly dissipative dust-ion-acoustic solitons in complex plasmas and the effect of electromagnetic radiation, Phys. Plasmas, 2012, vol. 19, no. 1, p. 013703.

    Article  ADS  Google Scholar 

  • Mitrofanov, I.G., Sanin, A.B., Boynton, W.V., et al., Hydrogen mapping of the lunar south pole using the LRO neutron detector experiment LEND, Science, 2010, vol. 330, pp. 483–486.

    Article  ADS  Google Scholar 

  • Rennilson, J.J. and Criswell, D.R., Surveyor observations of lunar horizon-glow, Moon, 1974, vol. 10, pp. 121–142.

    Article  ADS  Google Scholar 

  • Shukla, P.K. and Mamun, A.A., Introduction to Dusty Plasmas Physics, Bristol, PH: Inst. Phys., 2002.

    Book  Google Scholar 

  • Sickafoose, A.A., Colwell, J.E., Horányi, M., and Robertson, S., Experimental investigations on photoelectric and triboelectric charging of dust, J. Geophys. Res., 2001, vol. 105, pp. 8343–8356.

    Article  ADS  Google Scholar 

  • Sickafoose, A.A., Colwell, J.E., Horányi, M., and Robertson, S., Experimental levitation of dust grains in a plasma sheath, J. Geophys. Res., 2002, vol. 107, no. A11, p. 1408.

    Article  Google Scholar 

  • Starukhina, L., Water detection on atmosphereless celestial bodies: alternative explanations of the observations, J. Geophys. Res., 2001, vol. 106, no. E7, pp. 14701–14710.

    Article  ADS  Google Scholar 

  • Sternovsky, Z., Sickafoose, A.A., Colwell, J.E., et al., Contact charging of lunar and Martian dust simulants, J. Geophys. Res., 2002, vol. 107, no. E11, p. 5105.

    Article  Google Scholar 

  • Sternovsky, Z., Chamberlin, P., Horányi, M., et al., Variability of the lunar photoelectron sheath and dust mobility due to solar activity, J. Geophys. Res., 2008, vol. 113, p. A10104.

    Article  ADS  Google Scholar 

  • Stubbs, T.J., Vondrak, R.R., and Farrell, W.M., A dynamic fountain model for lunar dust, Adv. Space Res., 2006, vol. 37, pp. 59–66.

    Article  ADS  Google Scholar 

  • Stubbs, T.J., Vondrak, R.R., Farrell, W.M., and Collier, M.R., Predictions of dust concentrations in the lunar exosphere, J. Astronaut., 2007, vol. 28, pp. 166–167.

    Google Scholar 

  • Tsytovich, V.N., Morfill, G.E., Vladimirov, S.V., and Thomas, H., Elementary Physics of Complex Plasmas, Berlin-Heidelberg: Springer, 2008.

    Book  MATH  Google Scholar 

  • Verheest, F., Waves in Dusty Space Plasmas, Dordrecht: Kluwer, 2000.

    Book  Google Scholar 

  • Walbridge, E., Lunar photoelectron layer, J. Geophys. Res., 1973, vol. 78, no. 19, pp. 3668–3687.

    Article  ADS  Google Scholar 

  • Zook, H. and McCoy, J., Large scale lunar horizon glow and a high altitude lunar dust exosphere, Geophys. Rev. Lett., 1991, vol. 18, no. 11, pp. 2117–2120.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © S.I. Popel, S.I. Kopnin, A.P. Golub’, G.G. Dol’nikov, A.V. Zakharov, L.M. Zelenyi, Yu.N. Izvekova, 2013, published in Astronomicheskii Vestnik, 2013, Vol. 47, No. 6, pp. 455–466.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Popel, S.I., Kopnin, S.I., Golub’, A.P. et al. Dusty plasma at the surface of the moon. Sol Syst Res 47, 419–429 (2013). https://doi.org/10.1134/S0038094613060063

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0038094613060063

Keywords

Navigation