Skip to main content
Log in

A Study of Association of the MIR137 VNTR rs58335419 with Schizophrenia

  • HUMAN GENETICS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The MIR137 gene encodes microRNA-137 (miR-137), which is a brain-enriched miR that is highly expressed in various brain regions. miR-137 has been identified as a modulator of processes involved in the pathogenesis of neuropsychiatric disorders. Functional polymorphism of variable number of tandem repeats (VNTR) rs58335419 was found in the regulatory region of the MIR137 gene. It is associated with a change in the expression of miR-137 and, as a result, with an increased risk of developing psychopathologies, including schizophrenia. In this study, we for the first time have analyzed the distribution of frequencies of alleles and genotypes of MIR137 VNTR in a large sample from the Russian population. The association of VNTR with the risk of schizophrenia has been studied. It was found that the presence of VNTR alleles with more than three repeats, as well as a genotype homozygous for such alleles, is associated with an increased risk of developing schizophrenia (OR = 1.4, 95% CI: 1.01–1.95).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. Stefansson, H., Ophof, R.A., Steinberg, S., et al., Common variants conferring risk of schizophrenia, Nature, 2009, vol. 460, no. 7256, pp. 744–747. https://doi.org/10.1038/nature08186

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  2. Gejman, P.V., Sanders, A.R., and Duan, J., The role of genetics in the etiology of schizophrenia, Psychiatr. Clin. North Am., 2010, vol. 33, no. 1, pp. 35–66. https://doi.org/10.1016/j.psc.2009.12.003

    Article  PubMed  PubMed Central  Google Scholar 

  3. Polderman, T.J., Benyamin, B., de Leeuw, C.A., et al., Meta-analysis of the heritability of human traits based on fifty years of twin studies, Nat. Genet., 2015, vol. 47, no. 7, pp. 702–709. https://doi.org/10.1038/ng.3285

    Article  CAS  PubMed  Google Scholar 

  4. Trubetskoy, V., Pardiña, A.F., Qi, T., et al., Mapping genomic loci implicates genes and synaptic biology in schizophrenia, Nature, 2022, vol. 604, pp. 502–508. https://doi.org/10.1038/s41586-022-04434-5

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  5. Lam, M., Chen, C.Y., Li, Z., et al., Comparative genetic architectures of schizophrenia in East Asian and European populations, Nat. Genet., 2019, vol. 51, no. 12. P. 1670–1678. https://doi.org/10.1038/s41588-019-0512-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schizophrenia Working Group of the Psychiatric Genomics Consortium, Ripke, S., Walters, J.T., and O’Donovan, M.C., Mapping genomic loci prioritizes genes and implicates synaptic biology in schizophrenia, medRxiv, 2020. https://doi.org/10.1101/2020.09.12.20192922

  7. Jaffe, A.E., Straub, R.E., Shin, J.H., et al., Developmental and genetic regulation of the human cortex transcriptome illuminate schizophrenia pathogenesis, Nat. Neurosci., 2018, vol. 21, no. 8, pp. 1117–1125. https://doi.org/10.1038/s41593-018-0197-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Takata, A., Matsumoto, N., and Kato, T., Genome-wide identification of splicing QTLs in the human brain and their enrichment among schizophrenia-associated loci, Nat. Commun., 2017, vol. 8, pp. 14519–14529. https://doi.org/10.1038/ncomms14519

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  9. Bakhtiari, M., Park, J., Ding, Y.C., et al., Variable number tandem repeats mediate the expression of proximal genes, Nat. Commun., 2021, vol. 12, no. 1, pp. 2075–2099. https://doi.org/10.1038/s41467-021-22206-z

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  10. Eslami, R.M., Hernández, Y., Drinan, S.D., et al., Genome-wide characterization of human minisatellite VNTRs: population-specific alleles and gene expression differences, Nucleic Acids Res., 2021, vol. 49, no. 8, pp. 4308–4324. https://doi.org/10.1093/nar/gkab224

    Article  CAS  Google Scholar 

  11. Mahmoudi, E., Atkins, J.R., Quidé, Y., et al., The MIR137 VNTR rs58335419 is associated with cognitive impairment in schizophrenia and altered cortical morphology, Schizophr. Bull., 2021, vol. 47, no. 2, pp. 495–504. https://doi.org/10.1093/schbul/sbaa123

    Article  PubMed  Google Scholar 

  12. Warburton, A., Breen, G., Rujescu, D., et al., Characterization of a REST-regulated internal promoter in the schizophrenia genome-wide associated gene MIR137, Schizophr. Bull., 2015, vol. 41, no. 3, pp. 698–707. https://doi.org/10.1093/schbul/sbu117

    Article  PubMed  Google Scholar 

  13. Li, M., Jaffe, A.E., Straub, R.E., et al., A human-specific AS3MT isoform and BORCS7 are molecular risk factors in the 10q24.32 schizophrenia-associated locus, Nat. Med., 2016, vol. 22, pp. 649–656. https://doi.org/10.1038/nm.4096

    Article  CAS  PubMed  Google Scholar 

  14. Mahmoudi, E. and Cairns, M.J., MiR-137: an important player in neural development and neoplastic transformation, Mol. Psychiatry, 2017, vol. 22, no. 1, pp. 44–55. https://doi.org/10.1038/mp.2016.150

    Article  CAS  PubMed  Google Scholar 

  15. Warburton, A., Breen, G., Bubb, V.J., et al., A GWAS SNP for schizophrenia is linked to the internal MIR137 promoter and supports differential allele-specific expression, Schizophr. Bull., 2016, vol. 42, no. 4, pp. 1003–1008. https://doi.org/10.1093/schbul/sbv144

    Article  PubMed  Google Scholar 

  16. Pacheco, A., Berger, R., Freedman, R., and Law, A.J., A VNTR regulates miR-137 expression through novel alternative splicing and contributes to risk for schizophrenia, Sci. Rep., 2019, vol. 9, no. 1, pp. 11793–11804. https://doi.org/10.1038/s41598-019-48141-0

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  17. O’Connor, R.M., Gururajan, A., Dinan, T.G., et al., All roads lead to the miRNome: miRNAs have a central role in the molecular pathophysiology of psychiatric disorders, Trends Pharmacol. Sci., 2016, vol. 37, no. 12, pp. 1029–1044. https://doi.org/10.1016/j.tips.2016.10.004

    Article  CAS  PubMed  Google Scholar 

  18. Arakawa, Y., Yokoyama, K., Tasaki, S., et al., Transgenic mice overexpressing miR-137 in the brain show schizophrenia-associated behavioral deficits and transcriptome profiles, PLoS One, 2019, vol. 14, no. 7, p. e0220389. https://doi.org/10.1371/journal.pone.0220389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Forero, D.A., van der Ven, K., Callaerts, P., and Del-Favero, J., miRNA genes and the brain: implications for psychiatric disorders, Hum. Mutat., 2010, vol. 31, no. 11, pp. 1195–1204. https://doi.org/10.1002/humu.21344

    Article  CAS  PubMed  Google Scholar 

  20. He, E., Lozano, M.A.G., Stringer, S., et al., MIR137 schizophrenia-associated locus controls synaptic function by regulating synaptogenesis, synapse maturation and synaptic transmission, Hum. Mol. Genet., 2018, vol. 27, no. 11, pp. 1879–1891. https://doi.org/10.1093/hmg/ddy089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Strazisar, M., Cammaerts, S., van der Ven, K., et al., MIR137 variants identified in psychiatric patients affect synaptogenesis and neuronal transmission gene sets, Mol. Psychiatry, 2015, vol. 20, no. 4, pp. 472–481. https://doi.org/10.1038/mp.2014.53

    Article  CAS  PubMed  Google Scholar 

  22. Hill, M.J., Donocik, J.G., Nuamah, R.A., et al., Transcriptional consequences of schizophrenia candidate miR-137 manipulation in human neural progenitor cells, Schizophr. Res., 2014, vol. 153, nos. 1–3, pp. 225–230. https://doi.org/10.1016/j.schres.2014.01.034

    Article  PubMed  PubMed Central  Google Scholar 

  23. Siegert, S., Seo, J., Kwon, E.J., et al., The schizophrenia risk gene product miR-137 alters presynaptic plasticity, Nat. Commun., 2015, vol. 18, no. 7, pp. 1008–1016. https://doi.org/10.1038/nn.4023

    Article  CAS  Google Scholar 

  24. He, E., Lozano, M.A.G., Stringer, S., et al., MIR137 schizophrenia-associated locus controls synaptic function by regulating synaptogenesis, synapse maturation and synaptic transmission, Hum. Mol. Genet., 2018, vol. 27, no. 11, pp. 1879–1891. https://doi.org/10.1093/hmg/ddy089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Collins, A.L., Kim, Y., Bloom, R.J., et al., Transcriptional targets of the schizophrenia risk gene MIR137, Transl. Psychiatry, 2014, vol. 4, no. 7, p. e404. https://doi.org/10.1038/tp.2014.42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kwon, E., Wang, W., and Tsai, L.H., Validation of schizophrenia-associated genes CSMD1, C10orf26, CACNA1C and TCF4 as miR-137 targets, Mol. Psychiatry, 2013, vol. 18, pp. 11–12. https://doi.org/10.1038/mp.2011.170

    Article  CAS  PubMed  Google Scholar 

  27. Kim, A.H., Parker, E.K., Williamson, V., et al., Experimental validation of candidate schizophrenia gene ZNF804A as target for hsa-miR-137, Schizophr. Res., 2012, vol. 141, no. 1, pp. 60–64. https://doi.org/10.1016/j.schres.2012.06.038

    Article  PubMed  PubMed Central  Google Scholar 

  28. Agarwal, V., Bell, G.W., Nam, J.-W., and Bartel, D.P., Predicting effective microRNA target sites in mammalian mRNAs, eLife, 2015, vol. 4., p. e05005. https://doi.org/10.7554/eLife.05005

    Article  PubMed  PubMed Central  Google Scholar 

  29. Wright, C., Gupta, C.N., Chen, J., et al., Polymorphisms in MIR137HG and microRNA-137-regulated genes influence gray matter structure in schizophrenia, Transl. Psychiatry, 2016, vol. 6, no. 2, p. e724. https://doi.org/10.1038/tp.2015.211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Guella, I., Sequeira, A., Rollins, B., et al., Analysis of miR-137 expression and rs1625579 in dorsolateral prefrontal cortex, J. Psychiatr. Res., 2013, vol. 47, no. 9, pp. 1215–1221. https://doi.org/10.1016/j.jpsychires.2013.05.021

    Article  PubMed  PubMed Central  Google Scholar 

  31. Zhang, Z., Yan, T., Wang, Y., et al., Polymorphism in schizophrenia risk gene MIR137 is associated with the posterior cingulate cortex’s activation and functional and structural connectivity in healthy controls, Neuroimage Clin., 2018, vol. 19, pp. 160–166. https://doi.org/10.1016/j.nicl.2018.03.039

    Article  PubMed  PubMed Central  Google Scholar 

  32. Jafari, P., Baghernia, S., Moghanibashi, M., and Mohamadynejad, P., Significant association of variable number tandem repeat polymorphism rs58335419 in the MIR137 gene with the risk of gastric and colon cancers, Br. J. Biomed. Sci., 2022, vol. 79, pp. 10095–10099. https://doi.org/10.3389/bjbs.2021.10095

    Article  PubMed  PubMed Central  Google Scholar 

  33. Egawa, J., Nunokawa, A., Shibuya, M., et al., Resequencing and association analysis of MIR137 with schizophrenia in a Japanese population, Psychiatry Clin. Neurosci., 2013, vol. 67, no. 4, pp. 277–279. https://doi.org/10.1111/pcn.12047

    Article  CAS  PubMed  Google Scholar 

  34. The1000 Genomes Project. http://www.internationalgenome.org.

  35. Mamdani, M., McMichael, G.O., Gadepalli, V., et al., Differential regulation of schizophrenia-associated microRNA gene function by variable number tandem repeats (VNTR) polymorphism, Schizophr. Res., 2013, vol. 151, nos. 1–3, pp. 284–286. https://doi.org/10.1016/j.schres.2013.10.024

    Article  PubMed  PubMed Central  Google Scholar 

  36. Bemis, L.T., Chen, R., and Amato, C.M, et al., MicroRNA-137 targets microphthalmia-associated transcription factor in melanoma cell lines, Cancer Res., 2008, vol. 68, pp. 1362–1368. https://doi.org/10.1158/0008-5472.CAN-07-2912

    Article  CAS  PubMed  Google Scholar 

  37. González-Giraldo, Y., González-Reyes, R.E., and Forero, D.A., A functional variant in MIR137, a candidate gene for schizophrenia, affects Stroop test performance in young adults, Psychiatry. Res., 2016, vol. 236, pp. 202–205. https://doi.org/10.1016/j.psychres.2016.01.006

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was carried out within the framework of a state assignment.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G. I. Korovaitseva or V. E. Golimbet.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research ethics committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. The study protocol was approved by the ethics committee of the Mental Health Research Centre no. 98 dated September 11, 2007.

Informed voluntary consent was obtained from each of the participants included in the study.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korovaitseva, G.I., Oleichik, I.V., Lezheiko, T.V. et al. A Study of Association of the MIR137 VNTR rs58335419 with Schizophrenia. Russ J Genet 60, 192–198 (2024). https://doi.org/10.1134/S102279542402008X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102279542402008X

Keywords:

Navigation