Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

MIR137 variants identified in psychiatric patients affect synaptogenesis and neuronal transmission gene sets

Abstract

Sequence analysis of 13 microRNA (miRNA) genes expressed in the human brain and located in genomic regions associated with schizophrenia and/or bipolar disorder, in a northern Swedish patient/control population, resulted in the discovery of two functional variants in the MIR137 gene. On the basis of their location and the allele frequency differences between patients and controls, we explored the hypothesis that the discovered variants impact the expression of the mature miRNA and consequently influence global mRNA expression affecting normal brain functioning. Using neuronal-like SH-SY5Y cells, we demonstrated significantly reduced mature miR-137 levels in the cells expressing the variant miRNA gene. Subsequent transcriptome analysis showed that the reduction in miR-137 expression led to the deregulation of gene sets involved in synaptogenesis and neuronal transmission, all implicated in psychiatric disorders. Our functional findings add to the growing data, which implicate that miR-137 has an important role in the etiology of psychiatric disorders and emphasizes its involvement in nervous system development and proper synaptic function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Lichtenstein P, Yip BH, Bjork C, Pawitan Y, Cannon TD, Sullivan PF et al. Common genetic determinants of schizophrenia and bipolar disorder in Swedish families: a population-based study. Lancet 2009; 373: 234–239.

    Article  CAS  PubMed  Google Scholar 

  2. Purcell SM, Wray NR, Stone JL, Visscher PM, O'Donovan MC, Sullivan PF et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 2009; 460: 748–752.

    CAS  PubMed  Google Scholar 

  3. Mattick JS . Non-coding RNAs: the architects of eukaryotic complexity. EMBO Rep 2001; 2: 986–991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Perkins DO, Jeffries C, Sullivan P . Expanding the 'central dogma': the regulatory role of nonprotein coding genes and implications for the genetic liability to schizophrenia. Mol Psychiatry 2005; 10: 69–78.

    Article  CAS  PubMed  Google Scholar 

  5. Pillai RS . MicroRNA function: multiple mechanisms for a tiny RNA? RNA 2005; 11: 1753–1761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T . Identification of novel genes coding for small expressed RNAs. Science 2001; 294: 853–858.

    Article  CAS  PubMed  Google Scholar 

  7. Lai EC . Micro RNAs are complementary to 3' UTR sequence motifs that mediate negative post-transcriptional regulation. Nat Genet 2002; 30: 363–364.

    Article  CAS  PubMed  Google Scholar 

  8. Place RF, Li LC, Pookot D, Noonan EJ, Dahiya R . MicroRNA-373 induces expression of genes with complementary promoter sequences. Proc Natl Acad Sci USA 2008; 105: 1608–1613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Vasudevan S, Tong Y, Steitz JA . Switching from repression to activation: microRNAs can up-regulate translation. Science 2007; 318: 1931–1934.

    Article  CAS  PubMed  Google Scholar 

  10. He X, Zhang Q, Liu Y, Pan X . Cloning and identification of novel microRNAs from rat hippocampus. Acta Biochim Biophys Sin (Shanghai) 2007; 39: 708–714.

    Article  CAS  Google Scholar 

  11. Bak M, Silahtaroglu A, Moller M, Christensen M, Rath MF, Skryabin B et al. MicroRNA expression in the adult mouse central nervous system. RNA 2008; 14: 432–444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Liang Y, Ridzon D, Wong L, Chen C . Characterization of microRNA expression profiles in normal human tissues. BMC Genomics 2007; 8: 166.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 2007; 129: 1401–1414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Beveridge NJ, Tooney PA, Carroll AP, Tran N, Cairns MJ . Down-regulation of miR-17 family expression in response to retinoic acid induced neuronal differentiation. Cell Signal 2009; 21: 1837–1845.

    Article  CAS  PubMed  Google Scholar 

  15. Beveridge NJ, Gardiner E, Carroll AP, Tooney PA, Cairns MJ . Schizophrenia is associated with an increase in cortical microRNA biogenesis. Mol Psychiatry 2010; 15: 1176–1189.

    Article  CAS  PubMed  Google Scholar 

  16. Xu B, Hsu PK, Karayiorgou M, Gogos JA . MicroRNA dysregulation in neuropsychiatric disorders and cognitive dysfunction. Neurobiol Dis 2012; 46: 291–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Beveridge NJ, Cairns MJ . MicroRNA dysregulation in schizophrenia. Neurobiol Dis 2012; 46: 263–271.

    Article  CAS  PubMed  Google Scholar 

  18. Lewis CM, Levinson DF, Wise LH, DeLisi LE, Straub RE, Hovatta I et al. Genome scan meta-analysis of schizophrenia and bipolar disorder, part II: Schizophrenia. Am J Hum Genet 2003; 73: 34–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Segurado R, Detera-Wadleigh SD, Levinson DF, Lewis CM, Gill M, Nurnberger JI Jr et al. Genome scan meta-analysis of schizophrenia and bipolar disorder, part III: Bipolar disorder. Am J Hum Genet 2003; 73: 49–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ripke S, Sanders AR, Kendler KS, Levinson DF, Sklar P, Holmans PA et al. Genome-wide association study identifies five new schizophrenia loci. Nat Genet 2011; 43: 969–976.

    Article  CAS  Google Scholar 

  21. Ripke S, O'Dushlaine C, Chambert K, Moran JL, Kahler AK, Akterin S et al. Genome-wide association analysis identifies 13 new risk loci for schizophrenia. Nat Genet 2013; 45: 1150–1159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Iwai N, Naraba H . Polymorphisms in human pre-miRNAs. Biochem Biophys Res Commun 2005; 331: 1439–1444.

    Article  CAS  PubMed  Google Scholar 

  23. Sun G, Yan J, Noltner K, Feng J, Li H, Sarkis DA et al. SNPs in human miRNA genes affect biogenesis and function. RNA 2009; 15: 1640–1651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ma H, Wu Y, Choi JG, Wu H . Lower and upper stem-single-stranded RNA junctions together determine the Drosha cleavage site. Proc Natl Acad Sci USA 2013; 110: 20687–20692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Morin RD, O'Connor MD, Griffith M, Kuchenbauer F, Delaney A, Prabhu AL et al. Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells. Genome Res 2008; 18: 610–621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Marti E, Pantano L, Banez-Coronel M, Llorens F, Minones-Moyano E, Porta S et al. A myriad of miRNA variants in control and Huntington's disease brain regions detected by massively parallel sequencing. Nucleic Acids Res 2010; 38: 7219–7235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhou H, Arcila ML, Li Z, Lee EJ, Henzler C, Liu J et al. Deep annotation of mouse iso-miR and iso-moR variation. Nucleic Acids Res 2012; 40: 5864–5875.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Neilsen CT, Goodall GJ, Bracken CP . IsomiRs–the overlooked repertoire in the dynamic microRNAome. Trends Genet 2012; 28: 544–549.

    Article  CAS  PubMed  Google Scholar 

  29. Kozlowska E, Krzyzosiak WJ, Koscianska E . Regulation of huntingtin gene expression by miRNA-137, -214, -148a, and their respective isomiRs. Int J Mol Sci 2013; 14: 16999–17016.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Cloonan N, Wani S, Xu Q, Gu J, Lea K, Heater S et al. MicroRNAs and their isomiRs function cooperatively to target common biological pathways. Genome Biol 2011; 12: R126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rozen S, Skaletsky H . Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 2000; 132: 365–386.

    CAS  PubMed  Google Scholar 

  32. Sham PC, Curtis D . Monte Carlo tests for associations between disease and alleles at highly polymorphic loci. Ann Hum Genet 1995; 59: 97–105.

    Article  CAS  PubMed  Google Scholar 

  33. Lorenz R, Bernhart SH, Honer Zu Siederdissen C, Tafer H, Flamm C, Stadler PF et al. ViennaRNA Package 2.0. Algorithms Mol Biol 2011; 6: 26.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Darty K, Denise A, Ponty Y . VARNA: Interactive drawing and editing of the RNA secondary structure. Bioinformatics 2009; 25: 1974–1975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Almeida-Souza L, Goethals S, de Winter V, Dierick I, Gallardo R, Van Durme J et al. Increased monomerization of mutant HSPB1 leads to protein hyperactivity in Charcot-Marie-Tooth neuropathy. J Biol Chem 2010; 285: 12778–12786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 2002; 3:RESEARCH0034.

  37. Hellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J . qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol 2007; 8: R19.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Tusher VG, Tibshirani R, Chu G . Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 2001; 98: 5116–5121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Saeed AI, Bhagabati NK, Braisted JC, Liang W, Sharov V, Howe EA et al. TM4 microarray software suite. Methods Enzymol 2006; 411: 134–193.

    Article  CAS  PubMed  Google Scholar 

  40. Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 2003; 34: 267–273.

    Article  CAS  PubMed  Google Scholar 

  41. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 2005; 102: 15545–15550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Green MJ, Cairns MJ, Wu J, Dragovic M, Jablensky A, Tooney PA et al. Genome-wide supported variant MIR137 and severe negative symptoms predict membership of an impaired cognitive subtype of schizophrenia. Mol Psychiatry 2013; 18: 774–780.

    Article  CAS  PubMed  Google Scholar 

  43. Lett T, Chakavarty M, Felsky D, Brandl E, Tiwari A, Gonçalves V et al. The genome-wide supported microRNA-137 variant predicts phenotypic heterogeneity within schizophrenia. Mol Psychiatry 2013; 18: 443–450.

    Article  CAS  PubMed  Google Scholar 

  44. Whalley HC, Papmeyer M, Romaniuk L, Sprooten E, Johnstone EC, Hall J et al. Impact of a microRNA MIR137 susceptibility variant on brain function in people at high genetic risk of schizophrenia or bipolar disorder. Neuropsychopharmacology 2012; 37: 2720–2729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bergen SE, O'Dushlaine CT, Ripke S, Lee PH, Ruderfer DM, Akterin S et al. Genome-wide association study in a Swedish population yields support for greater CNV and MHC involvement in schizophrenia compared with bipolar disorder. Mol Psychiatry 2012; 17: 880–886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gong J, Tong Y, Zhang HM, Wang K, Hu T, Shan G et al. Genome-wide identification of SNPs in microRNA genes and the SNP effects on microRNA target binding and biogenesis. Hum Mutat 2012; 33: 254–263.

    Article  CAS  PubMed  Google Scholar 

  47. Szulwach KE, Li X, Smrt RD, Li Y, Luo Y, Lin L et al. Cross talk between microRNA and epigenetic regulation in adult neurogenesis. J Cell Biol 2010; 189: 127–141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Silber J, Lim D, Petritsch C, Persson A, Maunakea A, Yu M et al. miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells. BMC Med 2008; 6: 14.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Smrt RD, Szulwach KE, Pfeiffer RL, Li X, Guo W, Pathania M et al. MicroRNA miR-137 regulates neuronal maturation by targeting ubiquitin ligase mind bomb-1. Stem Cells 2010; 28: 1060–1070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Green M, Cairns M, Wu J, Dragovic M, Jablensky A, Tooney P et al. Genome-wide supported variant MIR137 and severe negative symptoms predict membership of an impaired cognitive subtype of schizophrenia. Mol Psychiatry 2012; 18: 774–780.

    Article  PubMed  Google Scholar 

  51. Yin J, Lin J, Luo X, Chen Y, Li Z, Ma G et al. miR-137: A New Player in Schizophrenia. Int J Mol Sci 2014; 15: 3262–3271.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Guella I, Sequeira A, Rollins B, Morgan L, Torri F, van Erp TG et al. Analysis of miR-137 expression and rs1625579 in dorsolateral prefrontal cortex. J Psychiatr Res 2013; 47: 1215–1221.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Cummings E, Donohoe G, Hargreaves A, Moore S, Fahey C, Dinan TG et al. Mood congruent psychotic symptoms and specific cognitive deficits in carriers of the novel schizophrenia risk variant at MIR-137. Neurosci Lett 2013; 532: 33–38.

    Article  CAS  PubMed  Google Scholar 

  54. Kwon E, Wang W, Tsai LH . Validation of schizophrenia-associated genes CSMD1, C10orf26, CACNA1C and TCF4 as miR-137 targets. Mol Psychiatry 2011; 18: 11–12.

    Article  PubMed  Google Scholar 

  55. Kim AH, Parker EK, Williamson V, McMichael GO, Fanous AH, Vladimirov VI . Experimental validation of candidate schizophrenia gene ZNF804A as target for hsa-miR-137. Schizophr Res 2012; 141: 60–64.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Egawa J, Nunokawa A, Shibuya M, Watanabe Y, Kaneko N, Igeta H et al. Resequencing and association analysis of MIR137 with schizophrenia in a Japanese population. Psychiatry Clin Neurosci 2013; 67: 277–279.

    Article  CAS  PubMed  Google Scholar 

  57. Bemis LT, Chen R, Amato CM, Classen EH, Robinson SE, Coffey DG et al. MicroRNA-137 targets microphthalmia-associated transcription factor in melanoma cell lines. Cancer Res 2008; 68: 1362–1368.

    Article  CAS  PubMed  Google Scholar 

  58. Althoff K, Beckers A, Odersky A, Mestdagh P, Koster J, Bray IM et al. MiR-137 functions as a tumor suppressor in neuroblastoma by downregulating KDM1A. Int J Cancer 2013; 133: 1064–1073.

    Article  CAS  PubMed  Google Scholar 

  59. Silber J, Lim DA, Petritsch C, Persson AI, Maunakea AK, Yu M et al. miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells. BMC Med 2008; 6: 14.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Geekiyanage H, Chan C . MicroRNA-137/181c regulates serine palmitoyltransferase and in turn amyloid beta, novel targets in sporadic Alzheimer's disease. J Neurosci 2011; 31: 14820–14830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Geekiyanage H, Jicha GA, Nelson PT, Chan C . Blood serum miRNA: Non-invasive biomarkers for Alzheimer's disease. Exp Neurol 2011; 235: 491–496.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Zhou L, Pupo GM, Gupta P, Liu B, Tran SL, Rahme R et al. A parallel genome-wide mRNA and microRNA profiling of the frontal cortex of HIV patients with and without HIV-associated dementia shows the role of axon guidance and downstream pathways in HIV-mediated neurodegeneration. BMC Genomics 2012; 13: 677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wright C, Turner J, Calhoun V, Perrone-Bizzozero N . Potential impact of miR-137 and its targets in schizophrenia. Front Genet 2013; 4: 58.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Selbach M, Schwanhausser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N . Widespread changes in protein synthesis induced by microRNAs. Nature 2008; 455: 58–63.

    Article  CAS  PubMed  Google Scholar 

  65. Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 2005; 433: 769–773.

    Article  CAS  PubMed  Google Scholar 

  66. Baek D, Villen J, Shin C, Camargo FD, Gygi SP, Bartel DP . The impact of microRNAs on protein output. Nature 2008; 455: 64–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lips ES, Cornelisse LN, Toonen RF, Min JL, Hultman CM, International Schizophrenia Consortium et al. Functional gene group analysis identifies synaptic gene groups as risk factor for schizophrenia. Mol Psychiatry 2012; 17: 996–1006.

    Article  CAS  PubMed  Google Scholar 

  68. Jia P, Sun J, Guo A, Zhao Z . SZGR: a comprehensive schizophrenia gene resource. Mol Psychiatry 2010; 15: 453–462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Jensen L, Kuhn M, Stark M, Chaffron S, Creevey C, Muller J et al. STRING 8–a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res 2009; 37: 6.

    Article  Google Scholar 

  70. Takeichi M . The cadherin superfamily in neuronal connections and interactions. Nat Rev Neurosci 2007; 8: 11–20.

    Article  CAS  PubMed  Google Scholar 

  71. Junghans D, Heidenreich M, Hack I, Taylor V, Frotscher M, Kemler R . Postsynaptic and differential localization to neuronal subtypes of protocadherin beta16 in the mammalian central nervous system. Eur J Neurosci 2008; 27: 559–571.

    Article  PubMed  Google Scholar 

  72. Sun J, Kuo PH, Riley BP, Kendler KS, Zhao Z . Candidate genes for schizophrenia: a survey of association studies and gene ranking. Am J Med Genet B Neuropsychiatr Genet 2008; 147B: 1173–1181.

    Article  PubMed  Google Scholar 

  73. Shao L, Vawter MP . Shared gene expression alterations in schizophrenia and bipolar disorder. Biol Psychiatry 2008; 64: 89–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Myles-Worsley M, Tiobech J, Browning SR, Korn J, Goodman S, Gentile K et al. Deletion at the SLC1A1 glutamate transporter gene co-segregates with schizophrenia and bipolar schizoaffective disorder in a 5-generation family. Am J Med Genet B Neuropsychiatr Genet 2013; 162B: 87–95.

    Article  PubMed  Google Scholar 

  75. McCullumsmith RE, Meador-Woodruff JH . Striatal excitatory amino acid transporter transcript expression in schizophrenia, bipolar disorder, and major depressive disorder. Neuropsychopharmacology 2002; 26: 368–375.

    Article  CAS  PubMed  Google Scholar 

  76. Lang UE, Puls I, Muller DJ, Strutz-Seebohm N, Gallinat J . Molecular mechanisms of schizophrenia. Cell Physiol Biochem 2007; 20: 687–702.

    Article  CAS  PubMed  Google Scholar 

  77. Murphy GG, Fedorov NB, Giese KP, Ohno M, Friedman E, Chen R et al. Increased neuronal excitability, synaptic plasticity, and learning in aged Kvbeta1.1 knockout mice. Curr Biol 2004; 14: 1907–1915.

    Article  CAS  PubMed  Google Scholar 

  78. Knable MB, Barci BM, Webster MJ, Meador-Woodruff J, Torrey EF, Stanley Neuropathology Consortium. Molecular abnormalities of the hippocampus in severe psychiatric illness: postmortem findings from the Stanley Neuropathology Consortium. Mol Psychiatry 2004; 9: 609–620, 544.

    Article  CAS  PubMed  Google Scholar 

  79. Drew CJ, Kyd RJ, Morton AJ . Complexin 1 knockout mice exhibit marked deficits in social behaviours but appear to be cognitively normal. Hum Mol Genet 2007; 16: 2288–2305.

    Article  CAS  PubMed  Google Scholar 

  80. Endele S, Rosenberger G, Geider K, Popp B, Tamer C, Stefanova I et al. Mutations in GRIN2A and GRIN2B encoding regulatory subunits of NMDA receptors cause variable neurodevelopmental phenotypes. Nat Genet 2010; 42: 1021–1026.

    Article  CAS  PubMed  Google Scholar 

  81. Xia J, Zhang W . A meta-analysis revealed insights into the sources, conservation and impact of microRNA 5'-isoforms in four model species. Nucleic Acids Res 2014; 42: 1427–1441.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to the patients and control individuals for their cooperation and participation in this research study. We acknowledge the contribution of the personnel of the VIB Genetic Service Facility (www.vibgeneticservicefacility.be) for the genetic analyses, Sofie Goethals and Vicky De Winter for their assistance and expertise in generation of stable cell lines, Bart Aelterman and Jenne Dierckx for their help with the prediction analyses and Professor Dr Kristel Sleegers for the assistance with statistical analysis. We also thank Professor Dr Michel Georges and Dr Haruko Takeda from the University of Liege, Faculty of Veterinary Sciences, for their helpful discussion. This research was funded by grants from the Fund for Scientific Research Flanders (FWO-F), the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-F), VIB International PhD Program and Stanley Medical Research Institute. The work was also supported by the Swedish Research Council (grant numbers 2006-4472, 2009-5269, 2009-3413) and the County Councils of Västerbotten and Norrbotten, Sweden. The Betula Study, from which the controls were recruited, is supported by grants from the Swedish Research Council (grant numbers 345-2003-3883, 315-2004-6977) and the Bank of Sweden Tercentenary Foundation, the Swedish Council for Planning and Coordination of Research, the Swedish Council for Research in the Humanities and Social Sciences and the Swedish Council for Social Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Del-Favero.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Strazisar, M., Cammaerts, S., van der Ven, K. et al. MIR137 variants identified in psychiatric patients affect synaptogenesis and neuronal transmission gene sets. Mol Psychiatry 20, 472–481 (2015). https://doi.org/10.1038/mp.2014.53

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2014.53

This article is cited by

Search

Quick links