Skip to main content
Log in

Methods for ChIP-seq Normalization and Their Application for the Analysis of Regulatory Elements in Brain Cells

  • REVIEW AND THEORETICAL ARTICLES
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Chromatin immunoprecipitation followed by sequencing (ChIP-seq) has become one of the major tools to elucidate gene-expression regulation. Similar to other molecular profiling methods, ChIP-seq is sensitive to several technical biases which affect downstream results, especially in cases when material quality is difficult to control, for example, frozen post-mortem human tissue. However, methods for bioinformatics analysis improve every year and allow the mitigation of these effects after sequencing by adjusting for both technical ChIP-seq biases and more general biological biases like postmortem interval or cell heterogenity of the sample. Here we review a wide selection of ChIP-seq normalization methods with a focus on application in specific experimental settings, in particular when brain tissue is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

REFERENCES

  1. Fyodorov, D.V., Zhou, B.-R., Skoultchi, A.I., and Bai, Y., Emerging roles of linker histones in regulating chromatin structure and function, Nat. Rev. Mol. Cell. Biol., 2018, vol. 19, no. 3, pp. 192—206. https://doi.org/10.1038/nrm.2017.94

    Article  CAS  PubMed  Google Scholar 

  2. Park, P.J., ChIP-seq: advantages and challenges of a maturing technology, Nat. Rev. Genet., 2009, vol. 10, no. 10, pp. 669—680. https://doi.org/10.1038/nrg2641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Furey, T.S., ChIP-seq and beyond: new and improved methodologies to detect and characterize protein—DNA interactions, Nat. Rev. Genet., 2012, vol. 13, no. 12, pp. 840—852. https://doi.org/10.1038/nrg3306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Altman, N., Batches and blocks, sample pools and subsamples in the design and analysis of gene expression studies, in Batch Effects and Noise in Microarray Experiments, Chichester, UK: Wiley, 2009, pp. 33—50. https://doi.org/10.1002/9780470685983.ch4

    Book  Google Scholar 

  5. Goh, W.W.B., Wang, W., and Wong, L., Why batch effects matter in omics data, and how to avoid them, Trends Biotechnol., 2017, vol. 35, no. 6, pp. 498—507. https://doi.org/10.1016/j.tibtech.2017.02.012

    Article  CAS  PubMed  Google Scholar 

  6. Jung, Y.L., Luquette, L.J., Ho, J.W.K., et al., Impact of sequencing depth in ChIP-seq experiments, Nucleic Acids Res., 2014, vol. 42, no. 9. https://doi.org/10.1093/nar/gku178

  7. Sundaram, A.Y.M., Hughes, T., Biondi, S., et al., A comparative study of ChIP-seq sequencing library preparation methods, BMC Genomics, 2016, vol. 17, no. 1, р. 816. https://doi.org/10.1186/s12864-016-3135-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Teng, M., Du, D., Chen, D., and Irizarry, R.A., Characterizing batch effects and binding site-specific variability in ChIP-seq data, NAR Genomics Bioinf., 2021, vol. 3, no. 4. https://doi.org/10.1093/nargab/lqab098

  9. Orlando, D.A., Chen, M.W., Brown, V.E., et al., Quantitative ChIP-seq normalization reveals global modulation of the epigenome, Cell Rep., 2014, vol. 9, no. 3, pp. 1163—1170. https://doi.org/10.1016/j.celrep.2014.10.018

    Article  CAS  PubMed  Google Scholar 

  10. Gu, B. and Lee, M.G., Histone H3 lysine 4 methyltransferases and demethylases in self-renewal and differentiation of stem cells, Cell Biosci., 2013, vol. 3, no. 1, p. 39. https://doi.org/10.1186/2045-3701-3-39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nakato, R. and Sakata, T., Methods for ChIP-seq analysis: a practical workflow and advanced applications, Methods, 2021, vol. 187, pp. 44—53. https://doi.org/10.1016/j.ymeth.2020.03.005

    Article  CAS  PubMed  Google Scholar 

  12. Price, E.M. and Robinson, W.P., Adjusting for batch effects in DNA methylation microarray data, a lesson learned, Front. Genet., 2018, vol. 9, p. 83. https://doi.org/10.3389/fgene.2018.00083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lun, A.T.L. and Smyth, G.K., csaw: a Bioconductor package for differential binding analysis of ChIP-seq data using sliding windows, Nucleic Acids Res., 2016, vol. 44, no. 5. https://doi.org/10.1093/nar/gkv1191

  14. Diaz, A., Park, K., Lim, D.A., and Song, J.S., Normalization, bias correction, and peak calling for ChIP-seq, Stat. Appl. Genet. Mol. Biol., 2012, vol. 11, no. 3. https://doi.org/10.1515/1544-6115.1750

  15. Stark, R. and Brown, G., DiffBind: differential binding analysis of ChIP-seq peak data: Bioconductor version 3.16, 2022. https://doi.org/10.18129/B9.bioc.DiffBind

  16. Robinson, M.D., McCarthy, D.J., and Smyth, G.K., edgeR: a Bioconductor package for differential expression analysis of digital gene expression data, Bioinformatics, 2010, vol. 26, no. 1, pp. 139—140. https://doi.org/10.1093/bioinformatics/btp616

    Article  CAS  PubMed  Google Scholar 

  17. Ji, H., Jiang, H., Ma, W., and Wong, W.H., Using CisGenome to analyze ChIP-chip and ChIP-seq data, Curr. Protoc. Bioinf., 2011. https://doi.org/10.1002/0471250953.bi0213s33

    Book  Google Scholar 

  18. Kharchenko, P.V., Tolstorukov, M.Y., and Park, P.J., Design and analysis of ChIP-seq experiments for DNA-binding proteins, Nat. Biotechnol., 2008, vol. 26, no. 12, pp. 1351—1359. https://doi.org/10.1038/nbt.1508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Xu, H., Handoko, L., Wei, X., et al., A signal-noise model for significance analysis of ChIP-seq with negative control, Bioinformatics, 2010, vol. 26, no. 9, pp. 1199—1204. https://doi.org/10.1093/bioinformatics/btq128

    Article  CAS  PubMed  Google Scholar 

  20. Liang, K. and Keleş, S., Normalization of ChIP-seq data with control, BMC Bioinf., 2012, vol. 13, no. 1, p. 199. https://doi.org/10.1186/1471-2105-13-199

    Article  Google Scholar 

  21. Shao, Z., Zhang, Y., Yuan, G.-C., et al., MAnorm: a robust model for quantitative comparison of ChIP-Seq data sets, Genome Biol., 2012, vol. 13, no. 3. https://doi.org/10.1186/gb-2012-13-3-r16

  22. Tu, S., Li, M., Chen, H., et al., MAnorm2 for quantitatively comparing groups of ChIP-seq samples, Genome Res., 2021, vol. 31, no. 1, pp. 131—145. https://doi.org/10.1101/gr.262675.120

    Article  PubMed  PubMed Central  Google Scholar 

  23. Nair, N.U., Sahu, A.D., Bucher, P., and Moret, B.M.E., ChIPnorm: a statistical method for normalizing and identifying differential regions in histone modification ChIP-seq libraries, PLoS One, 2012, vol. 7, no. 8. https://doi.org/10.1371/journal.pone.0039573

  24. Polit, L., Kerdivel, G., Gregoricchio, S., et al., CHIPIN: ChIP-seq inter-sample normalization based on signal invariance across transcriptionally constant genes, BMC Bioinf., 2021, vol. 22, no. 1, p. 407. https://doi.org/10.1186/s12859-021-04320-3

    Article  CAS  Google Scholar 

  25. Allhoff, M., Seré, K., Pires, J. F., and Zenke, M., Differential peak calling of ChIP-seq signals with replicates with THOR, Nucleic Acids Res., 2016, vol. 44, no. 20. https://doi.org/10.1093/nar/gkw680

  26. Lovén, J., Orlando, D.A., Sigova, A.A., et al., Revisiting global gene expression analysis, Cell, 2012, vol. 151, no. 3, pp. 476—482. https://doi.org/10.1016/j.cell.2012.10.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kanno, J., Aisaki, K., Igarashi, K., et al., “Per cell” normalization method for mRNA measurement by quantitative PCR and microarrays, BMC Genomics, 2006, vol. 7, no. 1, p.64. https://doi.org/10.1186/1471-2164-7-64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Egan, B., Yuan, C.-C., Craske, M.L., et al., An alternative approach to ChIP-Seq normalization enables detection of genome-wide changes in histone H3 lysine 27 trimethylation upon EZH2 inhibition, PLoS One, 2016, vol. 11, no. 11. https://doi.org/10.1371/journal.pone.0166438

  29. Jin, H., Kasper, L.H., Larson, J.D., et al., ChIPseqSpikeInFree: a ChIP-seq normalization approach to reveal global changes in histone modifications without spike-in, Bioinformatics, 2020, vol. 36, no. 4, pp. 1270—1272. https://doi.org/10.1093/bioinformatics/btz720

    Article  CAS  PubMed  Google Scholar 

  30. Pathania, M., De Jay, N., Maestro, N., et al., H3.3K27M cooperates with Trp53 loss and PDGFRA gain in mouse embryonic neural progenitor cells to induce invasive high-grade gliomas, Cancer Cell, 2017, vol. 32, no. 5, pp. 684—700. е9.https://doi.org/10.1016/j.ccell.2017.09.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Xiang, G., Keller, C.A., Giardine, B., et al., S3norm: simultaneous normalization of sequencing depth and signal-to-noise ratio in epigenomic data, Nucleic Acids Res., 2020, vol. 48, no. 8, р. e43. https://doi.org/10.1093/nar/gkaa105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Angelini, C., Heller, R., Volkinshtein, R., and Yekutieli, D., Is this the right normalization? A diagnostic tool for ChIP-seq normalization, BMC Bioinf., 2015, vol. 16, no. 1, p. 150. https://doi.org/10.1186/s12859-015-0579-z

    Article  CAS  Google Scholar 

  33. Bryois, J., Garrett, M.E., Song, L., et al., Evaluation of chromatin accessibility in prefrontal cortex of individuals with schizophrenia, Nat. Commun., 2018, vol. 9, no. 1, р. 3121. https://doi.org/10.1038/s41467-018-05379-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tsai, P.-C., Glastonbury, C.A., Eliot, M.N., et al., Smoking induces coordinated DNA methylation and gene expression changes in adipose tissue with consequences for metabolic health, Clin. Epigenet., 2018, vol. 10, p. 126. https://doi.org/10.1186/s13148-018-0558-0

    Article  CAS  Google Scholar 

  35. Ritchie, M.E., Phipson, B., Wu, D., et al., limma powers differential expression analyses for RNA-sequencing and microarray studies, Nucleic Acids Res., 2015, vol. 43, no. 7, р. e47. https://doi.org/10.1093/nar/gkv007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Love, M.I., Huber, W., and Anders, S., Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2, Genome Biol., 2014, vol. 15, no. 12, p. 550. https://doi.org/10.1186/s13059-014-0550-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang, Y., Parmigiani, G., and Johnson, W.E., ComBat-seq: batch effect adjustment for RNA-seq count data, NAR Genomics Bioinf., 2020, vol. 2, no. 3. https://doi.org/10.1093/nargab/lqaa078

  38. Johnson, W.E., Li, C., and Rabinovic, A., Adjusting batch effects in microarray expression data using empirical Bayes methods, Biostatistics, 2007, vol. 8, no. 1, pp. 118—127. https://doi.org/10.1093/biostatistics/kxj037

    Article  PubMed  Google Scholar 

  39. Shulha, H.P., Cheung, I., Guo, Y., et al., Coordinated cell type–specific epigenetic remodeling in prefrontal cortex begins before birth and continues into early adulthood, PLoS Genet., 2013, vol. 9, no. 4. https://doi.org/10.1371/journal.pgen.1003433

  40. Gusev, F.E., Reshetov, D.A., Mitchell, A.C., et al., Epigenetic-genetic chromatin footprinting identifies novel and subject-specific genes active in prefrontal cortex neurons, FASEB J., 2019, vol. 33, no. 7, pp. 8161—8173. https://doi.org/10.1096/fj.201802646R

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nott, A., Holtman, I.R., Coufal, N.G., et al., Brain cell type-specific enhancer—promoter interactome maps and disease-risk association, Science, 2019, vol. 366, no. 6469, pp. 1134—1139. https://doi.org/10.1126/science.aay0793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dunham, I., Kundaje, A., Aldred, S.F., et al., An integrated encyclopedia of DNA elements in the human genome, Nature, 2012, vol. 489, no. 7414, pp. 57—74. https://doi.org/10.1038/nature11247

    Article  CAS  Google Scholar 

  43. Ouyang, Z., Bourgeois-Tchir, N., Lyashenko, E., et al., Characterizing the composition of iPSC derived cells from bulk transcriptomics data with CellMap, Sci. Rep., 2022, vol. 12, no. 1, р. 17394. https://doi.org/10.1038/s41598-022-22115-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jew, B., Alvarez, M., Rahmani, E., et al., Accurate estimation of cell composition in bulk expression through robust integration of single-cell information, Nat. Commun., 2020, vol. 11, no. 1, р. 1971. https://doi.org/10.1038/s41467-020-15816-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Li, H., Sharma, A., Luo, K., et al., DeconPeaker, a deconvolution model to identify cell types based on chromatin accessibility in ATAC-seq data of mixture samples, Front. Genet., 2020, vol. 11.

  46. Leek, J.T., svaseq: removing batch effects and other unwanted noise from sequencing data, Nucleic Acids Res., 2014, vol. 42, no. 21, р. e161. https://doi.org/10.1093/nar/gku864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Risso, D., Ngai, J., Speed, T.P., and Dudoit, S., Normalization of RNA-seq data using factor analysis of control genes or samples, Nat. Biotechnol., 2014, vol. 32, no. 9, pp. 896—902. https://doi.org/10.1038/nbt.2931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Akbarian, S., Liu, C., Knowles, J.A., et al., The psychENCODE project, Nat. Neurosci., 2015, vol. 18, no. 12, pp. 1707—1712. https://doi.org/10.1038/nn.4156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Amiri, A., Coppola, G., Scuderi, S., et al., Transcriptome and epigenome landscape of human cortical development modeled in organoids, Science, 2018, vol. 362, no. 6420. https://doi.org/10.1126/science.aat6720

  50. Girdhar, K., Hoffman, G.E., Jiang, Y., et al., Cell-specific histone modification maps in the human frontal lobe link schizophrenia risk to the neuronal epigenome, Nat. Neurosci., 2018, vol. 21, no. 8, pp. 1126—1136. https://doi.org/10.1038/s41593-018-0187-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Girdhar, K., Hoffman, G.E., Bendl, J., et al., Chromatin domain alterations linked to 3D genome organization in a large cohort of schizophrenia and bipolar disorder brains, Nat. Neurosci., 2022, vol. 25, no. 4, pp. 474—483. https://doi.org/10.1038/s41593-022-01032-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Persico, G., Casciaro, F., Amatori, S., et al., Histone H3 lysine 4 and 27 trimethylation landscape of human Alzheimer’s disease, Cells, 2022, vol. 11, no. 4, р. 734. https://doi.org/10.3390/cells11040734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Klein, H.-U., McCabe, C., Gjoneska, E., et al., Epigenome-wide study uncovers large-scale changes in histone acetylation driven by tau pathology in the aging and Alzheimer human brain, Nat. Neurosci., 2019, vol. 22, no. 1, pp. 37—46. https://doi.org/10.1038/s41593-018-0291-1

    Article  CAS  PubMed  Google Scholar 

  54. Mack, S.C., Singh, I., Wang, X., et al., Chromatin landscapes reveal developmentally encoded transcriptional states that define human glioblastoma, J. Exp. Med., 2019, vol. 216, no. 5, pp. 1071—1090. https://doi.org/10.1084/jem.20190196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Anders, S. and Huber, W., Differential expression analysis for sequence count data, Genome Biol., 2010, vol. 11, no. 10. https://doi.org/10.1186/gb-2010-11-10-r106

  56. Stępniak, K., Machnicka, M.A., Mieczkowski, J., et al., Mapping chromatin accessibility and active regulatory elements reveals pathological mechanisms in human gliomas, Nat. Commun., 2021, vol. 12, no. 1, р. 3621. https://doi.org/10.1038/s41467-021-23922-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (grant number 19-75-30039).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to F. E. Gusev, T. V. Andreeva or E. I. Rogaev.

Ethics declarations

The authors declare that they have no conflicts of interest.

This article does not contain any studies using animals as an object.

This article does not contain any studies involving humans as the subject.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gusev, F.E., Andreeva, T.V. & Rogaev, E.I. Methods for ChIP-seq Normalization and Their Application for the Analysis of Regulatory Elements in Brain Cells. Russ J Genet 59, 745–753 (2023). https://doi.org/10.1134/S1022795423080082

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795423080082

Keywords:

Navigation