Skip to main content
Log in

Effects of Salt Stress on Photosynthetic Pigments and Activity of Ribulose-1,5-bisphosphate Carboxylase/Oxygenase in Kalidium foliatum

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

The effects of NaCl and Na2SO4 on photosynthetic pigments, malondialdehyde (MDA), Rubisco activity and superoxide dismutase (SOD) activity were investigated in Kalidium foliatum (Pall.) Moq., which is distributed in the saline soil of Hetao irrigation area in Inner Mongolia China. The K. foliatum plants were treated with NaCl (0, 100, 250, 400 and 500 mM), Na2SO4 (0, 100, 250, 400 and 500 mM) and NaCl + Na2SO4 (1: 1, v/v) (0, 100, 250, 400 and 500 mM of Na+ concentration, 0, 50, 125, 200 and 250 mM of Cl and SO 2–4 concentration) for 10 days. Content of chlorophylls and carotenoids were significantly higher than control at increasing NaCl and Na2SO4 concentration, in contrast, were significantly reduced by higher concentration of NaCl + Na2SO4. Rubisco activity reduced steadily at 100 and 250 mM NaCl, while increased at 400 and 500 mM NaCl. Rubisco activity was significantly higher than control at 100 mM Na2SO4, and was no more change under NaCl + Na2SO4 treatment. The SOD activity increased with increasing NaCl and Na2SO4, and increased at moderate NaCl + Na2SO4 treatment. MDA content was lower than control at 250 mM salt concentration. On the basis of the data obtained, K. foliatum showed resistance to salt such as Na+, Cland SO 2–4 , Rubisco activity in K. foliatum might be more sensitive to salt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Chl:

chlorophyll

Rubisco:

ribulose-1,5-bisphosphate carboxylase/oxygenase

RuBP:

ribulose-1,5-bisphosphate

SOD:

superoxide dismutase

References

  1. Parida, A.K. and Das, A.B., Salt tolerance and salinity effects on plants: a review, Ecotoxicol. Environ. Saf., 2005, vol. 60, no. 3, pp. 324–349.

    Article  CAS  PubMed  Google Scholar 

  2. Shu, S., Yuan, L.Y., Guo, S.R., Sun, J., and Yuan, Y.H., Effects of exogenous spermine on chlorophyll fluorescence, antioxidant system and ultrastructure of chloroplasts in Cucumis sativus L. under salt stress, Plant Physiol. Biochem., 2013, vol. 63, no. 4, pp. 209–216.

    Article  CAS  PubMed  Google Scholar 

  3. Grotewold, E., The genetics and biochemistry of floral pigments, Annu. Rev. Plant Biol., 2006, vol. 57, no. 1, pp. 761–780.

    Article  CAS  PubMed  Google Scholar 

  4. Mittal, S., Kumari, N., and Sharma, V., Differential response of salt stress on Brassica juncea: photosynthetic performance, pigment, proline, D1 and antioxidant enzymes, Plant Physiol. Biochem., 2012, vol. 54, pp. 17–26.

    Article  CAS  PubMed  Google Scholar 

  5. Jensen, R.G. and Bahr, J.T., Ribulose-1,5-bisphosphate carboxylase-oxygenase, Annu. Rev. Plant Physiol., 1977, vol. 28, pp. 379–400.

    Article  CAS  Google Scholar 

  6. Lu, K.X., Cao, B.H., Feng, X.P., He, Y., and Jiang, D.A., Photosynthetic response of salt-tolerant and sensitive soybean varieties, Photosynthetica, 2009, vol. 47, no. 3, pp. 381–387.

    Article  CAS  Google Scholar 

  7. He, Y., Yu, C., Zhou, L., Chen, Y., Liu, A., Jin, J., Hong, J., Qi, Y., and Jiang, D., Rubisco decrease is involved in chloroplast protrusion and Rubisco-containing body formation in soybean (Glycine max) under salt stress, Plant Physiol. Biochem., 2014, vol. 74, pp. 118–124.

    Article  CAS  PubMed  Google Scholar 

  8. Asada, K., The water–water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons, Annu. Rev. Plant Biol. Plant Mol. Biol., 1999, vol. 50, pp. 601–639.

    Article  CAS  Google Scholar 

  9. Neto, A.D.D.A., Prisco, J.T., Enéas-Filho, J., Abreu, C.E.B.D., and Gomes-Filho, E., Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes, Environ. Exp. Bot., 2006, vol. 56, no. 1, pp. 87–94.

    Article  Google Scholar 

  10. Giustarini, D., Dalledonne, I., Tsikas, D., and Rossi, R., Oxidative stress and human diseases: origin, link, measurement, mechanisms, and biomarkers, Crit. Rev. Clin. Lab. Sci., 2009, vol. 46, nos. 5–6, pp. 241–281.

    Article  CAS  PubMed  Google Scholar 

  11. Kramer, G.F., Norman, H.A., Krizek, D.T., and Mirecki, R.M., Influence of UV-B radiation on polyamines, lipid peroxidation and membrane lipids in cucumber, Phytochemistry, 1991, vol. 30, no. 7, pp. 2101–2108.

    Article  CAS  Google Scholar 

  12. Xue, Y.F. and Liu, Z.P., Antioxidant enzymes and physiological characteristics in two Jerusalem artichoke cultivars under salt stress, Russ. J. Plant Physiol., 2008, vol. 55, no. 6, pp. 776–781.

    Article  CAS  Google Scholar 

  13. Shi, D. and Wang, D., Effects of various salt-alkaline mixed stresses on Aneurolepidium chinense (Trin.) Kitag, Plant Soil, 2005, vol. 271, no. 1, pp. 15–26.

    Article  CAS  Google Scholar 

  14. Lichtenthaler, H.K., Chlorophylls and carotenoids: pigments of photosynthetic biomembranes, Methods Enzymol., 1987, vol. 148, no. 1, pp. 350–382.

    Article  CAS  Google Scholar 

  15. Yang, C.W., Wang, P., Li, C.Y., Shi, D.C., and Wang, D.L., Comparison of effects of salt and alkali stresses on the growth and photosynthesis of wheat, Photosynthetica, 2008, vol. 46, no. 1, pp. 107–114.

    Article  CAS  Google Scholar 

  16. Chen, L.S., Qi, Y.P., Smith, B.R., and Liu, X.H., Aluminum-induced decrease in CO2 assimilation in citrus seedlings is unaccompanied by decreased activities of key enzymes involved in CO2 assimilation, Tree Physiol., 2005, vol. 25, no. 3, pp. 317–324.

    Article  CAS  PubMed  Google Scholar 

  17. Lin, Z.H., Chen, L.S., Chen, R.B., Zhang, F.Z., Jiang, H.X., and Ning, T., CO2 assimilation, ribulose-1,5-bisphosphate carboxylase/oxygenase, carbohydrates and photosynthetic electron transport probed by the JIP-test, of tea leaves in response to phosphorus supply, BMC Plant Biol., 2009, vol. 9, p. 43.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Islam, E., Liu, D., Li, T., Yang, X., Jin, X., Mahmood, Q., Tian, S., and Li, J., Effect of Pb toxicity on leaf growth, physiology and ultrastructure in the two ecotypes of Elsholtzia argyi, J. Hazard. Mater., 2008, vol. 154, nos. 1–3, pp. 914–926.

    Article  CAS  PubMed  Google Scholar 

  19. Yang, J.Y., Zheng, W., Tian, Y., Wu, Y., and Zhou, D.W., Effects of various mixed salt-alkaline stresses on growth, photosynthesis, and photosynthetic pigment concentrations of Medicago ruthenica seedlings, Photosynthetica, 2011, vol. 49, no. 2, pp. 275–284.

    Article  CAS  Google Scholar 

  20. Muhammad, S.M. and Muhammad, A., Exogenous application of potassium dihydrogen phosphate can alleviate the adverse effects of salt stress on sunflower, J. Plant Nutr., 2010, vol. 34, no. 7, pp. 1041–1057.

    Google Scholar 

  21. Verma, S. and Mishra, S.N., Putrescine alleviation of growth in salt stressed Brassica juncea, by inducing antioxidative defense system, J. Plant Physiol., 2005, vol. 162, pp. 669–677.

    Article  CAS  PubMed  Google Scholar 

  22. Ogren, W.L., Photorespiration: pathways, regulation, and modification, Annu. Rev. Plant Biol., 2009, vol. 35, pp. 415–442.

    Article  Google Scholar 

  23. Bota, J. and Medrano, H.J., Is photosynthesis limited by decreased Rubisco activity and RuBP content under progressive water stress? New Phytol., 2004, vol. 162, no. 3, pp. 671–681.

    Article  CAS  Google Scholar 

  24. Aragão, M.E.F., Guedes, M.M., Otoch, M.L.O., Guedes, M.I.F., Melo, D.F., and Lima, M.G.S., Differential responses of ribulose-1,5-bisphosphate carboxylase/oxygenase activities of two Vigna unguiculata cultivars to salt stress, Braz. J. Plant Physiol., 2005, vol. 17, no. 2, pp. 207–212.

    Article  Google Scholar 

  25. Munns, R. and Tester, M., Mechanisms of salinity tolerance, Annu. Rev. Plant Biol., 2008, vol. 59, no. 1, pp. 651–681.

    Article  CAS  PubMed  Google Scholar 

  26. Raychqudhuri, S.S. and Deng, X.W., The role of superoxide dismutase combating oxidative stress in higher plants, Bot. Rev., 2000, vol. 66, no. 1, pp. 89–98.

    Article  Google Scholar 

  27. Agarwal, S. and Pandey, V., Antioxidant enzyme responses to NaCl stress in Cassia angustifolia, Biol. Plant., 2004, vol. 48, no. 4, pp. 555–560.

    Article  CAS  Google Scholar 

  28. Lee, D.H., Kim, Y.S., and Lee, C.B., The inductive responses of the antioxidant enzymes by salt stress in the rice (Oryza sativa L.), J. Plant Physiol., 2001, vol. 158, no. 6, pp. 737–745.

    Article  CAS  Google Scholar 

  29. Zhang, Y., Xiong, M., Yan, R.Q., and Sun, F.Y., Salt and oxidative stress: similar and specific responses and their relation to salt tolerance in citrus, Planta, 1997, vol. 203, no. 4, pp. 460–469.

    Article  Google Scholar 

  30. Apel, K. and Hirt, H., Reactive oxygen species: metabolism, oxidative stress, and signal transduction, Annu. Rev. Plant Biol., 2004, vol. 55, pp. 373–399.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Jia.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, D.H., Wang, G.Z., Si, W.T. et al. Effects of Salt Stress on Photosynthetic Pigments and Activity of Ribulose-1,5-bisphosphate Carboxylase/Oxygenase in Kalidium foliatum. Russ J Plant Physiol 65, 98–103 (2018). https://doi.org/10.1134/S1021443718010144

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443718010144

Keywords

Navigation