Skip to main content
Log in

Hierarchically Organized MoS2 Films as Promising Electrodes for Flexible Supercapacitors

  • INORGANIC MATERIALS AND NANOMATERIALS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The formation of hierarchically organized MoS2 films on various substrates by a hydrothermal method was studied. The influence of synthesis conditions and the substrate (a glass or a flexible carbon paper substrate) on the crystal structure of sulfide films was determined using X-ray powder diffraction (XRD). Scanning electron microscopy (SEM) showed that the films on glass substrates comprised structurally different elements, namely a continuous dense layer of spherical nanoparticles on the surface of which hierarchically organized globular agglomerates of two types are arranged. A molybdenum disulfide shell about 1.5 μm thick, consisting of hierarchically organized nanosheets less than 10 nm thick, was formed on the surface of carbon fibers that make up the carbon paper. Elemental mapping was used to evaluate the homogeneity of the MoS2 film formed on the carbon paper. Atomic force microscopy (AFM) showed that an individual carbon fiber modified with a sulfide film had a mean square roughness of about 13 nm (over an area of about 100 μm2). According to Kelvin-probe force microscopy (KPFM) data, the electron work function of the material was 4.53 eV. The electrochemical characteristics of the manufactured flexible electrode based on a hierarchically organized molybdenum disulfide film were investigated. The specific capacitance and the stability of functional and microstructural properties of the manufactured supercapacitor electrode in 2000 charge–discharge cycles were evaluated. Thus, the proposed strategy is promising for the fabrication of efficient hierarchically organized MoS2 electrodes for flexible supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. B. Sun, Y.-Z. Long, Z.-J. Chen, et al., J. Mater. Chem. 2, 1209 (2014). https://doi.org/10.1039/C3TC31680G

    Article  CAS  Google Scholar 

  2. L. Gillan, J. Hiltunen, M. H. Behfar, et al., Jpn. J. Appl. Phys. 61, SE0804 (2022). https://doi.org/10.35848/1347-4065/ac586f

    Article  Google Scholar 

  3. M. Mohan, N. P. Shetti, and T. M. Aminabhavi, Mater. Today Chem. 27, 101333 (2023). https://doi.org/10.1016/j.mtchem.2022.101333

    Article  CAS  Google Scholar 

  4. S. Wei, R. Zhou, and G. Wang, ACS Omega 4, 15780 (2019). https://doi.org/10.1021/acsomega.9b01058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. X. He and X. Zhang, J. Energy Storage 56, 106023 (2022). https://doi.org/10.1016/j.est.2022.106023

    Article  Google Scholar 

  6. R. Thangappan, S. Kalaiselvam, A. Elayaperumal, et al., Dalton Trans. 45, 2637 (2016). https://doi.org/10.1039/C5DT04832J

    Article  CAS  PubMed  Google Scholar 

  7. A. Riaz, M. R. Sarker, M. H. M. Saad, et al., Sensors 21, 5041 (2021). https://doi.org/10.3390/s21155041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. M. Saraf, K. Natarajan, and S. M. Mobin, ACS Appl. Mater. Interfaces 10, 16588 (2018). https://doi.org/10.1021/acsami.8b04540

    Article  CAS  PubMed  Google Scholar 

  9. S. S. Karade, D. P. Dubal, and B. R. Sankapal, RSC Adv. 6, 39159 (2016). https://doi.org/10.1039/C6RA04441G

  10. Y.-Z. Zhang, Y. Wang, T. Cheng, et al., Chem. Soc. Rev. 48, 3229 (2019). https://doi.org/10.1039/C7CS00819H

    Article  CAS  PubMed  Google Scholar 

  11. D. P. Dubal, J. G. Kim, Y. Kim, et al., Energy Technol. 2, 325 (2014). https://doi.org/10.1002/ente.201300144

    Article  Google Scholar 

  12. E. Chalangar, E. M. Björk, and H. Pettersson, Sci. Rep. 12, 11843 (2022). https://doi.org/10.1038/s41598-022-15771-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. N. Joseph, P. M. Shafi, and A. C. Bose, Energy Fuels 34, 6558 (2020). https://doi.org/10.1021/acs.energyfuels.0c00430

    Article  CAS  Google Scholar 

  14. C. Guo, J. Pan, H. Li, et al., J. Mater. Chem. 5, 10855 (2017). https://doi.org/10.1039/C7TC03749J

    Article  CAS  Google Scholar 

  15. C. D. Quilty, L. M. Housel, D. C. Bock, et al., ACS Appl. Energy Mater. 2, 7635 (2019). https://doi.org/10.1021/acsaem.9b01538

    Article  CAS  Google Scholar 

  16. M. Acerce, D. Voiry, and M. Chhowalla, Nat. Nanotechnol. 10, 313 (2015). https://doi.org/10.1038/nnano.2015.40

    Article  CAS  PubMed  Google Scholar 

  17. U. Krishnan, M. Kaur, K. Singh, et al., Superlattices Microstruct. 128, 274 (2019). https://doi.org/10.1016/j.spmi.2019.02.005

    Article  CAS  Google Scholar 

  18. D. Gupta, V. Chauhan, and R. Kumar, Inorg. Chem. Commun. 144, 109848 (2022). https://doi.org/10.1016/j.inoche.2022.109848

    Article  CAS  Google Scholar 

  19. J. Tao, J. Chai, X. Lu, et al., Nanoscale 7, 2497 (2015). https://doi.org/10.1039/C4NR06411A

    Article  CAS  PubMed  Google Scholar 

  20. A. Taherkhani and M. Shahbazi, Mater. Today Commun. 34, 105092 (2023). https://doi.org/10.1016/j.mtcomm.2022.105092

    Article  CAS  Google Scholar 

  21. E. Serpini, A. Rota, A. Ballestrazzi, et al., Surf. Coatings Technol. 319, 345 (2017). https://doi.org/10.1016/j.surfcoat.2017.04.006

    Article  CAS  Google Scholar 

  22. Y. J. Cho, Y. Sim, J.-H. Lee, et al., Curr. Appl. Phys 45, 99 (2023). https://doi.org/10.1016/j.cap.2022.11.008

    Article  Google Scholar 

  23. L. Seravalli and M. Bosi, Materials 14, 7590 (2021). https://doi.org/10.3390/ma14247590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. N. Aspiotis, K. Morgan, B. März, et al., npj 2D Mater. Appl. 7, 18 (2023). https://doi.org/10.1038/s41699-023-00379-z

    Article  CAS  Google Scholar 

  25. A.-J. Cho, S. H. Ryu, J. G. Yim, et al., J. Mater. Chem. 10, 7031 (2022). https://doi.org/10.1039/D2TC01156E

    Article  CAS  Google Scholar 

  26. S. Duraisamy, A. Ganguly, P. K. Sharma, et al., ACS Appl. Nano Mater. 4, 2642 (2021). https://doi.org/10.1021/acsanm.0c03274

    Article  CAS  Google Scholar 

  27. M. B. Askari, A. F. Kalourazi, M. Seifi, et al., Optik (Stuttg.) 174, 154 (2018). https://doi.org/10.1016/j.ijleo.2018.08.035

    Article  CAS  Google Scholar 

  28. H. Du, D. Liu, M. Li, et al., RSC Adv. 5, 79724 (2015). https://doi.org/10.1039/C5RA08424E

    Article  CAS  Google Scholar 

  29. J. Li, A. Listwan, J. Liang, et al., Chem. Eng. J. 422, 130100 (2021). https://doi.org/10.1016/j.cej.2021.130100

    Article  CAS  Google Scholar 

  30. T. L. Simonenko, V. A. Bocharova, N. P. Simonenko, et al., Russ. J. Inorg. Chem. 65, 459 (2020). https://doi.org/10.1134/S003602362004018X

    Article  CAS  Google Scholar 

  31. T. L. Simonenko, V. A. Bocharova, P. Y. Gorobtsov, et al., Russ. J. Inorg. Chem. 65, 1304 (2020). https://doi.org/10.1134/S0036023620090181

  32. T. L. Simonenko, V. A. Bocharova, N. P. Simonenko, et al., Russ. J. Inorg. Chem. 66, 1779 (2021). https://doi.org/10.1134/S0036023621120160

    Article  CAS  Google Scholar 

  33. T. L. Simonenko, V. A. Bocharova, and N. P. Simonenko, Russ. J. Inorg. Chem. 66, 1633 (2021). https://doi.org/10.1134/S0036023621110176

    Article  CAS  Google Scholar 

  34. T. L. Simonenko, N. P. Simonenko, P. Y. Gorobtsov, et al., Ceram. Int. 48, 22401 (2022). https://doi.org/10.1016/j.ceramint.2022.04.252

    Article  CAS  Google Scholar 

  35. W. Zhao, X. Liu, X. Yang, et al., Nanomaterials 10, 1124 (2020). https://doi.org/10.3390/nano10061124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. X. Qiu, T. Zhang, Z. Dai, et al., Ionics (Kiel) 28, 939 (2022). https://doi.org/10.1007/s11581-021-04379-1

    Article  CAS  Google Scholar 

  37. H. Fan, R. Wu, H. Liu, et al., J. Mater. Sci. 53, 10302 (2018). https://doi.org/10.1007/s10853-018-2266-8

    Article  CAS  Google Scholar 

  38. J. Yan, Y. Huang, X. Zhang, et al., Nano-Micro Lett. 13, 114 (2021). https://doi.org/10.1007/s40820-021-00646-y

    Article  CAS  Google Scholar 

  39. Y.-L. Chen, C.-H. Tsai, M.-Y. Chen, et al., Materials (Basel) 11, 2587 (2018). https://doi.org/10.3390/ma11122587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. O. Samy, S. Zeng, M. D. Birowosuto, et al., Crystals 11, 355 (2021). https://doi.org/10.3390/cryst11040355

    Article  CAS  Google Scholar 

  41. J. Shakya, S. Kumar, D. Kanjilal, et al., Sci. Rep. 7, 9576 (2017). https://doi.org/10.1038/s41598-017-09916-5

    Article  PubMed  PubMed Central  Google Scholar 

  42. P. Zhou, X. Song, X. Yan, et al., Nanotecnology 27, 344002 (2016). https://doi.org/10.1088/0957-4484/27/34/344002

    Article  CAS  Google Scholar 

  43. S. Priya, D. Mandal, A. Chowdhury, et al., Nanoscale Adv. 5, 1172 (2023). https://doi.org/10.1039/D2NA00807F

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. B. Ranjan, G. K. Sharma, and D. Kaur, Appl. Phys. Lett. 118 (2021). https://doi.org/10.1063/5.0048272

  45. G. A. M. Ali, M. R. Thalji, W. C. Soh, et al., J. Solid State Electrochem. 24, 25 (2020). https://doi.org/10.1007/s10008-019-04449-5

    Article  CAS  Google Scholar 

  46. W. Chen, J. Gu, Q. Liu, et al., Nat. Nanotechnol. 17, 153 (2022). https://doi.org/10.1038/s41565-021-01020-0

    Article  CAS  PubMed  Google Scholar 

  47. R. Zhou, S. Wei, Y. Liu, et al., Sci. Rep. 9, 3980 (2019). https://doi.org/10.1038/s41598-019-40672-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. S. Kumar, V. Kumar, R. Devi, et al., Adv. Mater. Sci. Eng. 2022, 1 (2022). https://doi.org/10.1155/2022/1288623

    Article  CAS  Google Scholar 

  49. M. Manuraj, NairK. V. Kavya, K. N. N. Unni, et al., J. Alloys Compd. 819, 152963 (2020). https://doi.org/10.1016/j.jallcom.2019.152963

    Article  CAS  Google Scholar 

  50. S. D. Dhas, P. S. Maldar, M. D. Patil, et al., Vacuum 181, 109646 (2020). https://doi.org/10.1016/j.vacuum.2020.109646

    Article  CAS  Google Scholar 

  51. T. Quan, E. Härk, Y. Xu, et al., ACS Appl. Mater. Interfaces 13, 3979 (2021). https://doi.org/10.1021/acsami.0c19506

    Article  CAS  PubMed  Google Scholar 

  52. X. Yu, R. Du, B. Li, et al., Appl. Catal. 182, 504 (2016). https://doi.org/10.1016/j.apcatb.2015.09.003

    Article  CAS  Google Scholar 

  53. F. Zhang, Y. Tang, H. Liu, et al., ACS Appl. Mater. Interfaces 8, 4691 (2016). https://doi.org/10.1021/acsami.5b11705

    Article  CAS  PubMed  Google Scholar 

  54. M. Tobis, S. Sroka, and E. Frackowiak, Front. Energy Res. 9 (2021). https://doi.org/10.3389/fenrg.2021.647878

Download references

ACKNOWLEDGMENTS

The XRD and SEM studies were fulfilled using the facilities of the Shared Facilities Center of the Kurnakov Institute of General and Inorganic Chemistry whose functioning is supported by the Government assignment to the Kurnakov Institute in the field of basic research.

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. L. Simonenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Fedorova

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simonenko, T.L., Simonenko, N.P., Zemlyanukhin, A.A. et al. Hierarchically Organized MoS2 Films as Promising Electrodes for Flexible Supercapacitors. Russ. J. Inorg. Chem. 68, 1875–1886 (2023). https://doi.org/10.1134/S003602362360212X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003602362360212X

Keywords:

Navigation