Skip to main content
Log in

Hydrothermal Synthesis of Hierarchical CoMoO4 Nanostructures

  • SYNTHESIS AND PROPERTIES OF INORGANIC COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The formation of CoMoO4 anisotropic nanostructures has been studied with a combination of programmed co-precipitation of metal hydroxides and the hydrothermal method. The thermal behavior, phase composition, and microstructure features of the obtained nanopowder have been investigated. Using a set of physicochemical methods of analysis, it has been shown that the proposed synthesis conditions make it possible to form a single-phase nanodispersed (average CSR size of about 30 ± 3 nm) oxide with a monoclinic spinel-type structure (space group C2/m) that does not contain impurity inclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. E. E. Michaelides, Alternative Energy Sources (Heidelberg, Berlin, 2012). https://doi.org/10.1007/978-3-642-20951-2

    Book  Google Scholar 

  2. IEA (2019). World Energy Outlook IEA (Paris, 2019). www.iea.org/reports/world-energy-outlook-2019.

  3. M. V. Kalinina, L. V. Morozova, T. L. Egorova, et al., Glass. Phys. Chem. 42, 505 (2016). https://doi.org/10.1134/S1087659616050060

    Article  CAS  Google Scholar 

  4. T. L. Simonenko, N. P. Simonenko, P. Y. Gorobtsov, et al., J. Colloid Interface Sci. 588, 209 (2021). https://doi.org/10.1016/j.jcis.2020.12.052

    Article  CAS  PubMed  Google Scholar 

  5. T. L. Simonenko, N. P. Simonenko, P. Y. Gorobtsov, et al., J. Alloys Compd. 832, 154957 (2020). https://doi.org/10.1016/j.jallcom.2020.154957

    Article  CAS  Google Scholar 

  6. S. Zhou, S. Wang, S. Zhou, et al., Nanoscale 12, 8934 (2020). https://doi.org/10.1039/D0NR01152E

    Article  CAS  PubMed  Google Scholar 

  7. G. Liuting, X. U. Miao, M. A. Renping, et al., Sci. China Technol. Sci. 63, 1470 (2020).

    Article  Google Scholar 

  8. Y. Shao, M. F. El-Kady, J. Sun, et al., Chem. Rev. 118, 9233 (2018). 10.1021/acs.chemrev.8b0025

    Article  CAS  PubMed  Google Scholar 

  9. H. Zhang, K. Ye, X. Huang, et al., J. Power Sources 338, 136 (2017). https://doi.org/10.1016/j.jpowsour.2016.10.078

    Article  CAS  Google Scholar 

  10. B. J. Liu, D. B. Buchholz, R. P. H. Chang, et al., Adv. Mater. 22, 2333 (2010). https://doi.org/10.1002/adma.200903761

    Article  CAS  PubMed  Google Scholar 

  11. V. Augustyn, P. Simon, and B. Dunn, Energy Environ. Sci. 7, 1597 (2014). https://doi.org/10.1039/c3ee44164d

    Article  CAS  Google Scholar 

  12. A. Burke, J. Power Sources 91, 37 (2000). https://doi.org/10.1016/S0378-7753(00)00485-7

    Article  CAS  Google Scholar 

  13. P. Simon and Y. Gogotsi, Nat. Mater. 7, 845 (2008). https://doi.org/10.1038/nmat2297

    Article  CAS  PubMed  Google Scholar 

  14. X. Hu, W. Zhang, X. Liu, et al., Chem. Soc. Rev. 44, 2376 (2015). https://doi.org/10.1039/C4CS00350K

    Article  CAS  PubMed  Google Scholar 

  15. G. Harichandran, S. Radha, J. Yesuraj, et al., Appl. Phys. A 127, 627 (2021). https://doi.org/10.1007/s00339-021-04748-7

  16. D. Guo, Z. Guan, D. Hu, et al., J. Mater. Sci. 56, 10965 (2021). https://doi.org/10.1007/s10853-021-05945-8

  17. Y. Li, Z.-Y. Fu, and B.-L. Su, Adv. Funct. Mater. 22, 4634 (2012). https://doi.org/10.1002/adfm.201200591

    Article  CAS  Google Scholar 

  18. C. Yuan, X. Zhang, L. Su, et al., J. Mater. Chem. 19, 5772 (2009). https://doi.org/10.1039/b902221j

    Article  CAS  Google Scholar 

  19. X. Mao, Y. Wang, C. Xiang, et al., J. Alloys Compd. 844, 156133 (2020). https://doi.org/10.1016/j.jallcom.2020.156133

    Article  CAS  Google Scholar 

  20. D. K. Denis, X. Sun, J. Zhang, et al., ACS Appl. Energy Mater. 3, 3955 (2020). https://doi.org/10.1021/acsaem.0c00353

    Article  CAS  Google Scholar 

  21. L. Wang, X. Cui, L. Gong, et al., Nanoscale 9, 3898 (2017). https://doi.org/10.1039/c7nr00178a

  22. T. L. Simonenko, V. A. Bocharova, N. P. Simonenko, et al., Russ. J. Inorg. Chem. 65, 459 (2020). https://doi.org/10.1134/S003602362004018X

    Article  CAS  Google Scholar 

  23. Z. Xu, W. Deng, and X. Wang, Electrochem. Energy Rev. 4, 269 (2021). https://doi.org/10.1007/s41918-021-00094-7

    Article  CAS  Google Scholar 

  24. J. Bi, H. Wu, L. Wang, et al., Electrochim. Acta 367, 137409 (2021). https://doi.org/10.1016/j.electacta.2020.137409

    Article  CAS  Google Scholar 

  25. T. Mukhiya, A. P. Tiwari, K. Chhetri, et al., Chem. Eng. J. 420, 129679 (2021). https://doi.org/10.1016/j.cej.2021.129679

    Article  CAS  Google Scholar 

  26. C. Poochai, C. Sriprachuabwong, J. Sodtipinta, et al., J. Colloid Interface Sci. 583, 734 (2021). https://doi.org/10.1016/j.jcis.2020.09.045

    Article  CAS  PubMed  Google Scholar 

  27. C. Park, T. Kim, E. P. Samuel, et al., J. Power Sources 506, 230142 (2021). https://doi.org/10.1016/j.jpowsour.2021.230142

    Article  CAS  Google Scholar 

  28. K. Hareesh, S. R. Rondiya, N. Y. Dzade, et al., J. Sci. Adv. Mater. Devices 6, 291 (2021). https://doi.org/10.1016/j.jsamd.2021.03.001

    Article  CAS  Google Scholar 

  29. P. Dulyaseree and W. Wongwiriyapan, J. Phys. Conf. Ser. 1835, 012106 (2021). https://doi.org/10.1088/1742-6596/1835/1/012106

    Article  CAS  Google Scholar 

  30. C. Sun, L. Sun, K. Fan, et al., Dalton Trans. 50, 9283 (2021). https://doi.org/10.1039/D1DT01217G

    Article  CAS  PubMed  Google Scholar 

  31. Y. Sun, X. Sun, J. Zhang, et al., Sustain. Energy Fuels 5, 3918 (2021). https://doi.org/10.1039/D1SE00636C

    Article  CAS  Google Scholar 

  32. B. Tao, J. Li, F. Miao, et al., Ionics 27, 3627 (2021). https://doi.org/10.1007/s11581-021-04129-3

    Article  CAS  Google Scholar 

  33. T. Zhang, R. Wang, J. Xiao, et al., J. Colloid Interface Sci. 602, 123 (2021). https://doi.org/10.1016/j.jcis.2021.06.011

    Article  CAS  PubMed  Google Scholar 

  34. Z. Shi, S. Wei, H. Zuo, et al., J. Alloys Compd. 881, 160627 (2021). https://doi.org/10.1016/j.jallcom.2021.160627

    Article  CAS  Google Scholar 

  35. T. L. Simonenko, V. A. Bocharova, P. Y. Gorobtsov, et al., Russ. J. Inorg. Chem. 65, 1292 (2020). https://doi.org/10.1134/S0036023620090193

    Article  CAS  Google Scholar 

  36. T. L. Simonenko, V. A. Bocharova, P. Y. Gorobtsov, et al., Russ. J. Inorg. Chem. 65, 1304 (2020). https://doi.org/10.1134/S0036023620090181

    Article  CAS  Google Scholar 

  37. M. Safari and J. Mazloom, J. Solid State Electrochem. 25, 2189 (2021). https://doi.org/10.1007/s10008-021-04989-9

    Article  CAS  Google Scholar 

  38. M. Isacfranklin, R. Yuvakkumar, G. Ravi, et al., JOM 73, 1546 (2021). https://doi.org/10.1007/s11837-020-04525-6

    Article  CAS  Google Scholar 

  39. X. Yue, R. Hu, D. Zhu, et al., Surf. Interfaces 22, 100871 (2021). https://doi.org/10.1016/j.surfin.2020.100871

    Article  CAS  Google Scholar 

  40. K. Thompson, J. Choi, D. Neupane, et al., Surf. Coatings Technol. 421, 127435 (2021). https://doi.org/10.1016/j.surfcoat.2021.127435

  41. H. Liu, M. Zhang, Z. Song, et al., J. Alloys Compd. V. 881, 160660 (2021). https://doi.org/10.1016/j.jallcom.2021.160660

  42. Y. Zhang, J. Hu, C. Zhang, et al., J. Mater. Chem. A 9, 5060 (2021). https://doi.org/10.1039/D0TA08983D

  43. K. Eda, Y. Uno, N. Nagai, et al., J. Solid State Chem. 178, 2791 (2005). https://doi.org/10.1016/j.jssc.2005.06.014

    Article  CAS  Google Scholar 

  44. V. Blanco-Gutierrez, A. Demourgues, and M. Gaudon, Dalton Trans. 42, 13622 (2013). https://doi.org/10.1039/c3dt51656c

    Article  CAS  PubMed  Google Scholar 

  45. M. Mandal, D. Ghosh, S. Giri, et al., RSC Adv. 4, 30832 (2014). https://doi.org/10.1039/C4RA03399J

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

X-ray powder diffraction studies and SEM studies were carried out using the equipment of the Center for Collective Use of the Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences.

Funding

This work was partially supported by a Scholarship of the President of the Russian Federation for young scientists and graduate students (project SP-2407.2019.1, synthesis of nanostructures of the CoMoO4 composition) and the Ministry of Science and Higher Education of the Russian Federation within the framework of the State Assignment of the Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences (study of the microstructural characteristics of the obtained nanopowder).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. L. Simonenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Avdeeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simonenko, T.L., Bocharova, V.A., Simonenko, N.P. et al. Hydrothermal Synthesis of Hierarchical CoMoO4 Nanostructures. Russ. J. Inorg. Chem. 66, 1633–1638 (2021). https://doi.org/10.1134/S0036023621110176

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023621110176

Keywords:

Navigation