Skip to main content
Log in

Effect of Special Boundaries on γ → α Transformation in Austenitic Stainless Steel

  • STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Orientation microscopy (EBSD) has been used to investigate the structure of austenitic stainless steel containing 18% Cr and 9 wt % Ni after its long-term operation at high temperatures and neutron irradiation. The γ → α shear transformation has been implemented partially in the samples during deformation-free cutting. Austenite has decomposed due to isotropic stresses oriented normally to the surface under study. The precision of orientation relationships (ORs), such as Kurdjumov–Sachs, Nishiyama–Wassermann, Greninger–Troiano, and others during γ → α transformation has been comparatively analyzed. The Greninger–Troiano OR has been found to be the best possible OR describing the transformation in this case. The α phase has been shown to nucleate at coherent twin boundaries (Σ3 in the coincidence site lattice model) between austenite grains. This has determined the variants of the current ORs and the unambiguous crystallographic orientation of α-phase grains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. R. Shukla, S. K. Ghosh, D. Chakrabarti, and S. Chatterjee, “Microstructure, texture, property relationship in thermo-mechanically processed ultra-low carbon micro alloyed steel for pipe line application,” Mater. Sci. Eng. 587, No. 10, 201–208 (2013).

    Article  CAS  Google Scholar 

  2. W. Gong, Y. Tomota, Y. Adachi, A. M. Paradowska, J. F. Kelleher, S. Y. Zhang, “Effects of ausforming temperature on bainite transformation, microstructure and variant selection in nanobainite steel,” Acta Mater. 61, No. 11, 4142–4154 (2013).

    Article  CAS  Google Scholar 

  3. K. D. Zilnyk, V. B. Oliveira, H. R. Z. Sandim, A. Möslang, and D. Raabe, “Martensitic transformation in Eurofer-97 and ODS-Eurofer steels: A comparative study,” J. Nucl. Mater. 462, 360–367 (2015).

    Article  CAS  Google Scholar 

  4. N. Nakada, H. Ito, Y. Matsuoka, T. Tsuchiyama, and S. Takaki, “Deformation-induced martensitic transformation behavior in cold-rolled and cold-drawn type 316 stainless steels,” Acta Mater. 58, No. 3, 895–903 (2010).

    Article  CAS  Google Scholar 

  5. L. Cho, E. J. Seo, C. De. Bruno, and B. C. Cooman, “Near-Ac3 austenitized ultra-fine-grained quenching and partitioning (Q&P) steel,” Scr. Mater. 123, 69–72 (2016).

    Article  CAS  Google Scholar 

  6. M.-X. Zhang and P. M. Kelly, “Crystallographic features of phase transformations in solids,” Prog. Mater. Sci. 54, 1101–1170 (2009).

    Article  CAS  Google Scholar 

  7. I. K. Razumov, Yu. N. Gornostyrev, and M. I. Katsnel’son, “Towards the ab initio based theory of phase transformations in iron and steel,” Phys. Met. Metallogr. 118, No. 4, 362–388 (2017).

    Article  CAS  Google Scholar 

  8. M. P. Kashchenko, V. G. Chashchina, N. M. Kashchenko, E. S. Belosludtseva, V. G. Pushin, and A. N. Uksusnikov, “Dynamic scenarios of the formation of martensite with the {110} habits in the Ni50Mn50 alloy,” Phys. Met. Metallogr. 120, No. 4, 782–789 (2019).

    Article  Google Scholar 

  9. M. P. Kashchenko, N. M. Kashchenko, and V. G. Chashchina, “Effect of change in the wavelengths of short wave shifts on the formation of a twin structure fragment in thin lamellar α-martensite crystals,” Phys. Met. Metallogr. 119, No. 1, 1–5 (2018).

    Article  CAS  Google Scholar 

  10. R. Decocker, R. Petrov, P. Gobernado, and L. Kestens, “Quantitative evaluation of the crystallographic relation in a martensitic transformation in an Fe–28% Ni alloy,” Evolution of Deformation Microstructures In 3D. Proc. of 25th RisØ International Symposium on Materials Science (2004), pp. 275–281.

  11. H. Kitahara, R. Ueji, N. Tsuji, and Y. Minamino, “Crystallographic features of lath martensite in low-carbon steel,” Acta Mater. 54, 1279–1288 (2006).

    Article  CAS  Google Scholar 

  12. A. Shibata, H. Jafarian, and N. Tsuji, “Microstructure and crystallographic features of martensite transformed from ultrafine-grained austenite in Fe24Ni0.3C alloy,” Mater. Trans. 53, No. 1, 81–86 (2012).

    Article  CAS  Google Scholar 

  13. T. Tomida and M. Wakita, “Transformation texture in hot-rolled steel sheets and its quantitative prediction,” ISIJ Int. 52, No. 4, 601–609 (2012).

    Article  CAS  Google Scholar 

  14. V. Kraposhin, I. Jakovleva, L. Karkina, G. Nuzhny, T. Zubkova, and A. Talis, “Microtwinning as a common mechanism for the martensitic and pearlitic transformations,” J. Alloys Compd. 577, 30–36 (2013).

    Article  Google Scholar 

  15. V. M. Gundyrev and V. I. Zel’dovich, “Crystallographic analysis of the fcc → bcc martensitic transformation in high-carbon steel,” Phys. Met. Metallogr. 115, No. 10, 973–980 (2014).

    Article  Google Scholar 

  16. V. M. Gundyrev, V. I. Zel’dovich, and V. M. Schastlivtsev, “Crystallographic analysis of the martensitic transformation in medium-carbon steel with packet martensite,” Phys. Met. Metallogr. 117, No. 10, 1017–1027 (2016).

    Article  CAS  Google Scholar 

  17. V. M. Gundyrev, V. I. Zel’dovich, and V. M. Schastlivtsev, “Orientation relationship and the mechanism of martensite transformation in medium-carbon steel with batch martensite,” Bull. Russ. Acad. Sci.: Phys. 81, No. 11, 1289–1294 (2017).

    Article  CAS  Google Scholar 

  18. Yu. V. Kaletina, I. G. Kabanova, N. Yu. Frolova, V. M. Gundyrev, and A. Yu. Kaletin, “Crystallographic specific features of the martensitic structure of Ni47Mn42In11 alloy,” Phys. Solid State 59, No. 10, 1984–1991 (2017).

    Google Scholar 

  19. V. A. Yardley and E. J. Payton, “Austenite–martensite/bainite orientation relationship: characterisation parameters and their application,” Mater. Sci. Technol. 30, No. 9. 1125–1130 (2014).

    Article  CAS  Google Scholar 

  20. C. Cayron, “One-step model of the face-centred-cubic to body-centred-cubic martensitic transformation,” Acta Crystallogr. A 69, 498–509 (2013).

    Article  CAS  Google Scholar 

  21. K. Koumatos and A. Muehlemann, “A theoretical investigation of orientation relationships and transformation strains in steels,” arXiv:1604.05270v2 [cond-mat.mtrl-sci]. (2016), p. 27.

  22. G. Mao, C. Cayron, X. Mao, R. Cao, R. Logé, and J. Chen, “Morphological and crystallographic characteristics of structure in a low-carbon iron–nickel alloy,” Crystals 8, 468(1–11) (2018).

  23. I. Yu. Pyshmintsev, A. O. Struin, A. M. Gervas’ev, M. L. Lobanov, G. M. Rusakov, S. V. Danilov, and A. B. Arabei, “Effect of bainite crystallographic texture on failure of pipe steel sheets made by controlled thermomechanical treatment,” Metallurgist, No. 4, 405–412 (2016).

    Article  Google Scholar 

  24. M. L. Lobanov, M. D. Borodina, S. V. Danilov, I. Yu. Pyshmintsev, and A. O. Struin, “Texture inheritance on phase transition in low-carbon, low-alloy pipe steel after thermomechanical controlled processing,” Steel Trans. 60, No. 11, 710–716 (2017).

    Article  Google Scholar 

  25. A. Rollett, F. Humphreys, G. S. Rohrer, and M. Hatherly, Recrystallization and Related Annealing Phenomena: Second Edition (Elsevier, Amsterdam, 2004), p. 658.

    Google Scholar 

  26. M. L. Lobanov, Yu. N. Loginov, S. V. Danilov, M. A. Golovin, and M. S. Karabanalov, “Effect of the rate of hot rolling on the structure and texture condition of plates from an aluminum alloy of the Al–Si–Mg system,” MiTOM, No. 5, 49–54 (2018).

    Google Scholar 

  27. V. I. Pastukhov, A. V. Kozlov, and M. L. Lobanov, “Crystallographic peculiarities of shear α–γ transformation in austenitic stainless steel in the high temperature area,” Solid State Phenom. 284, 253–258 (2018).

    Article  Google Scholar 

  28. V. I. Pastukhov, V. L. Panchenko, I. A. Portnykh, P. D. Freyer, L. A. Giannuzzi, and F. A. Garner, “Application of backscatter electrons for large area imaging of cavities produced by neutron irradiation,” J. Nucl. Mater. 480, 289–300 (2016).

    Article  CAS  Google Scholar 

  29. I. G. Kabanova and V. V. Sagaradze, “Statistical analysis of mutual misorientations of austenite (martensite) crystals after γ → α → γ (α → γ → α) martensitic transformations,” Phys. Met. Metallogr. 88, No. 2, 143–151 (1999).

    Google Scholar 

  30. N. A. Tereshchenko, I. L. Yakovleva, I. G. Kabanova, and D. A. Mirzaev, “Special misorientations in low-temperature isothermal bainite of high-carbon manganese–silicon steel,” Phys. Met. Metallogr. 120, No. 9, 954–961 (2019).

    Article  Google Scholar 

  31. M. A. Zorina, M. L. Lobanov, E. A. Makarova, and G. M. Rusakov, “Texture of primary recrystallization in fcc metal with low stacking fault energy,” MiTOM, No. 5, 55–63 (2018).

    Google Scholar 

  32. M. L. Lobanov, G. M. Rusakov, A. A. Redikul’tsev, S. V. Belikov, M. S. Karabanalov, E. R. Struina, and A. M. Gervas’ev, “Investigation of special misorientations in lath martensite of low-carbon steel using the method of orientation microscopy,” Phys. Met. Metallogr. 117, No. 3, 266–271 (2016).

    Article  Google Scholar 

  33. G. D. Sukhomlin, “High-angle low-energy boundaries in martensitic structures of hypoeutectoid steels,” Metallofiz. Nov. Tekhnol. 35, No. 8, 1109–1122 (2013).

    CAS  Google Scholar 

Download references

Funding

This work was supported by Goverment Program (No. 211) of support of the leading universities of the Russian Federation in order to increase their competitiveness (project no. 02.А03.21.0006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Lobanov.

Additional information

Translated by T. Gapontseva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lobanov, M.L., Pastukhov, V.I. & Redikul’tsev, A.A. Effect of Special Boundaries on γ → α Transformation in Austenitic Stainless Steel. Phys. Metals Metallogr. 122, 396–402 (2021). https://doi.org/10.1134/S0031918X21040050

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X21040050

Keywords:

Navigation