Skip to main content
Log in

Texture Inheritance on Phase Transition in Low-Carbon, Low-Alloy Pipe Steel after Thermomechanical Controlled Processing

  • Published:
Steel in Translation Aims and scope

Abstract

Orientation microscopy (electron back scatter diffraction, EBSD) is used to investigate the structural and textural states of low-carbon, low-alloy pipe steel (resembling 06Г2MБ steel) after thermomechanical controlled processing (TMCP): heating to 1000°C with subsequent quenching in water; isothermal quenching with holding at 300°C; and slow cooling in the furnace. The heat treatment is associated with double phase recrystallization: α → γ → aht, where aht is martensite, bainite, or ferrite. The texture obtained after TMCP is mainly formed by two strong scattered orientations from {112}〈110〉and two weaker scattered orientations close to {110}〈223〉. Despite the double phase recrystallization, the main crystallographic orientations of the bainite after TMCP and after isothermal quenching are the same. That indicates structural and textural inheritance in the material. The structures obtained after other thermal treatments of the structure (both martensite and ferrite) also include complex multicomponent textures, which are nevertheless distinct. Some of the main textural components of martensite and ferrite are the same as bainitic components. All the structures after heat treatment have a similar spectrum of large-angle boundaries, with strongly expressed boundaries of the coincidence site lattices (CSL): Σ3, Σ11, Σ25b, Σ33c, and Σ41c. The orientations forming the texture of all the structures obtained are related to the main orientation of the deformed austenite grains formed on hot rolling in TMCP, in accordance with orientation relations intermediate between the Kurdjumov–Sachs and Nishiyama–Wasserman types. In all cases, the orientation relationship of the textural components of the initial material and the structure obtained by heat treatment may be explained in terms of the onset of phase transformations (both shear and diffusional transition) at crystallographically determined boundaries (including special boundaries) similar to the CSL boundaries Σ3 and Σ11.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Endo, S. and Nakata, N., Development of Thermo-Mechanical Control Process (TMCP) and high performance steel in JFE Steel, in JFE Technical Report No. 20, Tokyo: JFE Steel Corporation, 2015, pp. 1–7.

    Google Scholar 

  2. Zhao, M.-Sh., Yang, K., and Shan, Y., The effects of thermo-mechanical control process on microstructures and mechanical properties of a commercial pipeline steel, Mater. Sci. Eng., A, 2002, vol. 335, pp. 14–20.

    Article  Google Scholar 

  3. Liang, X.J., Hua, M.J., Garcia, C.I., and DeArdo, A.J., The thermomechanical controlled processing of highstrength steel plate: a new view of toughness based on modern metallography, Mater. Sci. Forum, 2013, vol. 762, pp. 38–46.

    Article  Google Scholar 

  4. Nastich, S.Yu., Morozov, Yu.D., Matrosov, M.Yu., Denisov, S.V., Galkin, V.V., and Stekanov, P.A., Assimilation of production in an MMK 5000 mill of thick rolled sheet from low-alloy steels with improved strength and cold resistance properties, Metallurgist, 2012, vol. 55, nos. 11–12, pp. 810–818.

    Article  Google Scholar 

  5. Morozov, Yu.D., Goli-Oglu, E.A., Nastich, S.Yu., Denisov, S.V., and Stekanov, P.A., Thermomechanical treatment of microalloyed low-carbon steel at a 5000 mill for the production of cold-resistant thick strip, Steel Transl., 2012, vol. 42, no. 2, pp. 171–176.

    Article  Google Scholar 

  6. Il’inskii, V.I., Stepanov, P.P., Efron, L.I., Golovin, S.V., Geier, V.V., Matrosov, M.Y., Goli-Oglu, E.A., and Talanov, O.P., Experience of mastering plate production of strength category sawl 450 for deep-water pipes at the Vyksa Metallurgical Plant 5000 mill, Metallurgist, 2014, vol. 58, no. 1, pp. 38–42.

    Article  Google Scholar 

  7. Morozov, Yu.D., Nastich, S.Yu., Matrosov, M.Yu., and Chevskaya, O.N., Obtaining high-quality properties of rolled material for large-diameter pipes based on formation of ferrite-bainite-diameter pipes based on formation of ferrite-bainite microstructure, Metallurgist, 2008, vol. 52, nos. 1–2, pp. 21–28.

    Article  Google Scholar 

  8. Morozov, Yu.D., Matrosov, M.Yu., Nastich, S.Yu., and Arabei, A.B., New generation of high-strength tube steels with a ferrite-bainite structure, Metallurgist, 2008, vol. 52, no. 7–8. pp. 450–456.

    Article  Google Scholar 

  9. Matrosov, M.Yu., Efron, L.I., Kichkina, A.A., and Lyasotskii, I.V., A study of the microstructure of niobium-microalloyed pipe steel after different modes of controlled rolling with accelerated cooling, Met. Sci. Heat Treat., 2008, vol. 50, nos. 3–4. pp. 136–141.

    Article  Google Scholar 

  10. Arabei, A.B., Pyshmintsev, I.Y., Shtremel’, M.A., Glebov, A.G., Struin, A.O., and Gervas’ev, A.M., Resistance of X80 steel to ductile-crack propagation in major gas lines, Steel Transl., 2009, vol. 39, no. 9, pp. 719–724.

    Article  Google Scholar 

  11. Efron, L.I., Morozov, Yu.D., and Goli-Oglu, E.A., Influence of controlled rolling on the structure and mechanical properties of low-carbon microalloy steel, Steel Transl., 2011, vol. 41, no. 5, pp. 434–439.

    Article  Google Scholar 

  12. Hulka, K., Peters, P., and Haisterkamp, F., Trends in the development of large-diameter pipe steels, Steel Transl., 1997, vol. 27, no. 10, pp. 64–70.

    Google Scholar 

  13. Stolheim, D.J., Modern alloy designs and production practice for today’s high strength oil and gas transmission line pipe steels. Part I, Metallurg, 2013, no. 11, pp. 53–66.

    Google Scholar 

  14. Sabirov, I., De Diego-Calderón, I., Molina-Aldareguia, J.M., Föjer, C., Thiessen, R., and Petrov, R.H., Microstructural design in quenched and partitioned (Q&P) steels to improve their fracture properties, Mater. Sci. Eng., A, 2016, vol. 657, pp. 136–146.

    Article  Google Scholar 

  15. Chastukhin, A.V., Ringinen, D.A., Khadeev, G.E., and Efron, L.I., Kinetics of the static recrystallization of austenite of niobium-microalloyed pipe steels, Metallurgist, 2016, vol. 59, no. 11, pp. 1180–1187.

    Article  Google Scholar 

  16. Kichkina, A.A., Matrosov, M.Yu., Efron, L.I., Klyukvin, M.B., and Golovanov, A.V., Effect of structural of anisotropy of ferrite-bainite pipe steel on mechanical properties in tensile and impact bending tests, Metallurgist, 2011, vol. 54, nos. 11–12, pp. 808–816.

    Article  Google Scholar 

  17. Shtremel’, M.A., Prochnost’ splavov. Chast’2. Deformatsiya (Strength of Alloys, Part 2: Deformation), Moscow: Mosk. Inst. Stali Splavov, 1997.

    Google Scholar 

  18. Belyaevskikh, A.S., Lobanov, M.L., Rusakov, G.M., and Redikul’tsev, A.A., Improving the production of superthin anisotropic electrical steel, Steel Transl., 2015, vol. 45, no. 12, pp. 982–986.

    Article  Google Scholar 

  19. Pyshmintsev, I.Yu., Struin, A.O., Gervas’ev, A.M., Lobanov, M.L., Rusakov, G.M., Danilov, S.V., and Arabey, A.B., Effect of bainite crystallographic texture on failure of pipe steel sheets made by controlled thermomechanical treatment, Metallurgist, 2016, vol. 60, no. 3–4, pp. 405–412.

    Article  Google Scholar 

  20. Pyshmintsev, I.Yu., Gervasyev, A.M., Petrov, R.H., et al., Crystallographic texture as a factor enabling ductile fracture arrest in high strength pipeline steel, Mater. Sci. Forum, 2012, vols. 702–703, pp. 770–773.

    Google Scholar 

  21. Mohtadi-Bonab, M.A., Eskandari, M., and Szpunar, J.A., Texture, local misorientation, grain boundary and recrystallization fraction in pipeline steels related to hydrogen induced cracking, Mater. Sci. Eng., A, 2014, vol. 620, pp. 97–106.

    Article  Google Scholar 

  22. Danilov, S.V., Struina, E.R., and Borodina, M.D., Splitting of pipe steel produced by TMCP, Steel Transl., 2017, vol. 47, no. 3, pp. 188–189.

    Article  Google Scholar 

  23. Hölscher, M., Raabe, D., and Lücke, K., Relationship between rolling textures and shear textures in f.c.c. and b.c.c. metals, Acta Metall. Mater., 1994, vol. 42, no. 3, pp. 879–886.

    Article  Google Scholar 

  24. Andreev, Yu.G., Zaikova, E.I., and Shtremel’, M.A., Borders and lineage boundary in batch martensite, Phys. Met. Metallogr., 1990, vol. 49, no. 3, pp. 161–167.

    Google Scholar 

  25. Schastlivtsev, V.M., Blindt, L.B., Rodionov, L.P., and Yakovleva, I.D., Structure of martensite packets in engineering steels, Phys. Met. Metallogr., 1988, vol. 66, no. 4, pp. 123–133.

    Google Scholar 

  26. Nesterova, E.V., Rubtsov, A.S., Rybin, V.R., and Zolotorevskii, N.Yu., High angle boundaries, resulting at phase transformations, Poverkhn.: Fiz., Khim., Mekh., 1982, no. 5, pp. 30–35.

    Google Scholar 

  27. Gong, W., Tomota, Y., Paradowska, A.M. et al., Effects of ausforming temperature on bainite transformation, microstructure and variant selection in nanobainite steel, Acta Mater., 2013, vol. 61, pp. 4142–4154.

    Article  Google Scholar 

  28. Schastlivtsev, V.M., The structural and crystallographic features of the lathy martensite of structural steels, Metally, 2001, no. 5, pp. 32–41.

    Google Scholar 

  29. Pereloma, E.V., Al-Harbi, F., and Gazder, A.A., The crystallography of carbide-free bainites in thermomechanically processed low Si transformation-induced plasticity steels, J. Alloys Compd., 2014, vol. 615, pp. 96–110.

    Article  Google Scholar 

  30. Ray, R.K. and Jonas, J.J., Transformation textures in steels, Int. Mater. Rev., 1990, vol. 35, pp. 1–36.

    Article  Google Scholar 

  31. Hutchinson, B., Ryde, L., Lindh, E., and Tagashira, K., Texture in hot rolled austenite and resulting transformation products, Mater. Sci. Eng., A, 1998, vol. 257, no. 1, pp. 9–17.

    Article  Google Scholar 

  32. Lobanov, M.L., Danilov, S.V., Struin, A.O., Borodina, M.D., and Pyshmintsev, I.Yu., Structural and textural heredity at ↔ transformations in low-carbon low-alloy pipe steel, Vestn. Yuzh.-Ural. Gos. Univ., Ser.: Metall., 2016, vol. 16, no. 2, pp. 46–54.

    Google Scholar 

  33. Rusakov, G.M., Lobanov, M.L., Redikul’tsev, A.A., and Belyaevskikh, A.S., Special misorientations and textural heredity in the commercial alloy Fe–3% Si, Phys. Met. Metallogr., 2014, vol. 115, no. 8, pp. 775–785.

    Article  Google Scholar 

  34. Nakada, N., Ito, H., Matsuoka, Y., et al., Deformation-induced martensitic transformation behavior in cold-rolled and cold-drawn type 316 stainless steels, Acta Mater., 2010, vol. 58, pp. 895–903.

    Article  Google Scholar 

  35. Humphreys, F.J. and Hatherly, M., Recrystallization and Related Annealing Phenomena, Oxford: Elsevier, 2004.

    Google Scholar 

  36. Lobanov, M.L., Rusakov, G.M., Redikul’tsev, A.A. Belikov, S.V., Karabanalov, M.S., Struina, E.R., and Gervas’ev, A.M., Research of special boundaries in lath martensite of low-carbon steel by orientation microscopy, Phys. Met. Metallogr., 2016, vol. 117, no. 3, pp. 254–259.

    Article  Google Scholar 

  37. Stepanov, A.I., Ashikhmina, I.N., Sergeeva, K.I., Belikov, S.V., Musikhin, S.A., Karabanalov, M.S., and Al-Katawi, A.A., Structure and properties of low-alloy Cr–Mo–V steel after austenitization in the intercritical temperature range, Steel Transl., 2014, vol. 44, no. 6, pp. 469–473.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Lobanov.

Additional information

Original Russian Text © M.L. Lobanov, M.D. Borodina, S.V. Danilov, I.Yu. Pyshmintsev, A.O. Struin, 2017, published in Izvestiya Vysshikh Uchebnykh Zavedenii, Chernaya Metallurgiya, 2017, No. 11, pp. 910–918.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lobanov, M.L., Borodina, M.D., Danilov, S.V. et al. Texture Inheritance on Phase Transition in Low-Carbon, Low-Alloy Pipe Steel after Thermomechanical Controlled Processing. Steel Transl. 47, 710–716 (2017). https://doi.org/10.3103/S0967091217110055

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0967091217110055

Keywords

Navigation