Skip to main content
Log in

New Zwitter-Ionic Oligonucleotides: Preparation and Complementary Binding

  • STRUCTURAL-FUNCTIONAL ANALYSIS OF BIOPOLYMERS AND THEIR COMPLEXES
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

New zwitter-ionic oligonucleotide derivatives containing 1,2,3,4-tetrahydroisoquinoline-7-sulfonyl phosphoramidate group are described. Automated synthesis of these compounds was carried out according to the β-cyanoethyl phosphoramidite scheme via the Staudinger reaction between 2-trifluoroacetyl-1,2,3,4-tetrahydroisoquinoline-7-sulfonyl azide and phosphite triester within oligonucleotide grafted to polymer support. 1,2,3,4-Tetrahydroisoquinoline-7-sulfonyl phosphoramidate group (THIQ) was stable under the conditions of standard oligonucleotide synthesis, including the removal of protective groups and cleavage of the oligonucleotide from the polymer support by treatment with a mixture of concentrated aqueous solutions of ammonia and methylamine (1 : 1) at 55°C. Oligonucleotides modified by one to five THIQ groups in various positions were obtained. The zwitter-ionic character of the obtained derivatives was reflected in their varying mobility under conditions of denaturing PAGE. The thermal stability of the duplexes of oligodeoxynucleotides containing THIQ groups with complementary DNA and RNA only slightly differed from that of natural DNA:DNA and DNA:RNA duplexes. The results reported suggest that oligonucleotides modified with zwitter-ionic THIQ groups as antisense therapeutic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Curreri A., Sankholkar D., Mitragotri S., Zhao Z. 2022. RNA therapeutics in the clinic. Bioeng. Transl. Med. e10374.

  2. Halloy F., Biscans A., Bujold K.E., Debacker A., Hill A.C., Lacroix A., Luige O., Strömberg R., Sundstrom L., Vogel J., Ghidini A. 2021. Innovative developments and emerging technologies in RNA therapeutics. RNA Biol. 19, 313–332.

    Article  PubMed  Google Scholar 

  3. Zhou L.Y., Qin Z., Zhu Y.H., He Z.Y., Xu T. 2019. Current RNA-based therapeutics in clinical trials. Curr. Gene Ther. 19, 172–196.

    Article  PubMed  Google Scholar 

  4. Quemener A.M., Centomo M.L., Sax S.L., Panella R. 2022. Small drugs, huge impact: the extraordinary impact of antisense oligonucleotides in research and drug development. Molecules. 27, 536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Crooke S.T., Liang X.H., Baker B.F., Crooke R.M. 2021. Antisense technology: a review. J. Biol. Chem. 296, 100416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Crooke S.T., Baker B.F., Crooke R.M., Liang X.H. 2021. Antisense technology: an overview and prospectus. Nat. Rev. Drug Discov. 20, 427–453.

    Article  CAS  PubMed  Google Scholar 

  7. Arzumanov A., Walsh A.P., Rajwanshi V.K., Kumar R., Wengel J., Gait M.J. 2001. Inhibition of HIV-1 Tat-dependent trans activation by steric block chimeric 2'-O-methyl/LNA oligoribonucleotides. Biochemistry. 40, 14645–14654.

    Article  CAS  PubMed  Google Scholar 

  8. Arechavala-Gomeza V., Khoo B., Aartsma-Rus A. 2014. Splicing modulation therapy in the treatment of genetic diseases. Appl. Clin. Genet. 7, 245–252.

    PubMed  PubMed Central  Google Scholar 

  9. Crooke S.T. 2017. Molecular mechanisms of antisense oligonucleotides. Nucleic Acid Ther. 27, 70–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Eckstein F. 2014. Phosphorothioates, essential components of therapeutic oligonucleotides. Nucleic Acid Ther. 24, 374–387.

    Article  CAS  PubMed  Google Scholar 

  11. Shen W., De Hoyos C.L., Migawa M.T., Vickers T.A., Sun H., Low A., Bell T.A. 3rd, Rahdar M., Mukhopadhyay S., Hart C.E., Bell M., Riney S., Murray S.F., Greenlee S., Crooke R.M., Liang X.H., Seth P.P., Crooke S.T. 2019. Chemical modification of PS-ASO therapeutics reduces cellular protein-binding and improves the therapeutic index. Nat. Biotechnol. 37, 640–650.

    Article  CAS  PubMed  Google Scholar 

  12. Crooke S.T., Vickers TA., Liang X.H. 2020. Phosphorothioate modified oligonucleotide-protein interactions. Nucleic Acids Res. 48, 5235–5253.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Shen W., De Hoyos C.L., Sun H., Vickers T.A., Liang X.H., Crooke S.T. 2018. Acute hepatotoxicity of 2' fluoro-modified 5-10-5 gapmer phosphorothioate oligonucleotides in mice correlates with intracellular protein binding and the loss of DBHS proteins. Nucleic Acids Res. 46, 2204–2217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chelobanov B.P., Burakova E.A., Prokhorova D.V., Fokina A.A., Stetsenko D.A. 2017. New oligodeoxynucleotide derivatives containing N-(methanesulfonyl)-phosphoramidate (mesyl phosphoramidate) internucleotide group. Russ. J. Bioorg. Chem. 43, 664–668.

    Article  CAS  Google Scholar 

  15. Miroshnichenko S.K., Patutina O.A., Burakova E.A., Chelobanov B.P., Fokina A.A., Vlassov V.V., Altman S., Zenkova M.A., Stetsenko D.A. 2019. Mesyl phosphoramidate antisense oligonucleotides as an alternative to phosphorothioates: improved biochemical and biological properties. Proc. Natl. Acad. Sci. U. S. A. 116, 1229–1234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liang X.H., Shen W., Sun H., Kinberger G.A., Prakash T.P., Nichols J.G., Crooke S.T. 2016. Hsp90 protein interacts with phosphorothioate oligonucleotides containing hydrophobic 2'-modifications and enhances antisense activity. Nucleic Acids Res. 44, 3892–3907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Laurent Q., Martinent R., Moreau D., Winssinger N., Sakai N., Matile S. 2021. Oligonucleotide phosphorothioates enter cells by thiol-mediated uptake. Angew. Chem. Int. Ed. Engl. 60, 19102–19106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Meng M., Ducho C. 2018. Oligonucleotide analogues with cationic backbone linkages. Beilstein J. Org. Chem. 14, 1293–1308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Danielsen M.B., Wengel J. 2021. Cationic oligonucleotide derivatives and conjugates: a favorable approach for enhanced DNA and RNA targeting oligonucleotides. Beilstein J. Org. Chem. 17, 1828–1848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yanachkov I., Zavizion B., Metelev V., Stevens L.J., Tabatadze Y., Yanachkova M., Wright G., Krichevsky A.M., Tabatadze D.R. 2017. Self-neutralizing oligonucleotides with enhanced cellular uptake. Org. Biomol. Chem. 15, 1363–1380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Meng M., Schmidtgall B., Ducho C. 2018. Enhanced stability of DNA oligonucleotides with partially zwitterionic backbone structures in biological media. Molecules. 23, 2941.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Schmidtgall B., Kuepper A., Meng M., Grossmann T.N., Ducho C. 2018. Oligonucleotides with cationic backbone and their hybridization with DNA: interplay of base pairing and electrostatic attraction. Chem. Eur. J. 24, 1544–1553.

    Article  CAS  PubMed  Google Scholar 

  23. Prokhorova D.V., Chelobanov B.P., Burakova E.A., Fokina A.A., Stetsenko D.A. 2017. New oligodeoxyribonucleotide derivatives bearing internucleotide N-tosyl phosphoramidate groups: synthesis and complementary binding to DNA and RNA. Russ. J. Bioorg. Chem. 43, 38–42.

    Article  CAS  Google Scholar 

  24. Freier S.M., Altmann K.H. 1997. The ups and downs of nucleic acid duplex stability: structure-stability studies on chemically-modified DNA:RNA duplexes. Nucleic Acids Res. 25, 4429–4443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Su Y., Fujii H., Burakova E.A., Chelobanov B.P., Fuji-i M., Stetsenko D.A., Filichev V.V. 2019. Neutral and negatively charged phosphate modifications altering thermal stability, kinetics of formation and monovalent ion dependence of DNA G-quadruplexes. Chem. Asian J. 14, 1212–1220.

    Article  CAS  PubMed  Google Scholar 

  26. Su Y., Edwards P.J.B., Stetsenko D.A., Filichev V.V. 2020. The importance of phosphates for DNA G-quadruplex formation: evaluation of zwitterionic G-rich oligodeoxynucleotides. ChemBioChem. 21, 2455–2466.

    Article  CAS  PubMed  Google Scholar 

  27. Su Y., Bayarjargal M., Hale T.K., Filichev V.V. 2021. DNA with zwitterionic and negatively charged phosphate modifications: formation of DNA triplexes, duplexes and cell uptake studies. Beilstein J. Org. Chem. 17, 749–761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Su Y., Raguraman P., Veedu R.N., Filichev V.V. 2022. Phosphorothioate modification improves exon-skipping of antisense oligonucleotides based on sulfonyl phosphoramidates in mdx mouse myotubes. Org. Biomol. Chem. 20, 3790–3797.

    Article  CAS  PubMed  Google Scholar 

  29. Beaucage S.L., Caruthers M.H. 1981. Deoxynucleoside phosphoramidites—a new class of key intermediates for deoxypolynucleotide synthesis. Tetrahedron Lett. 22, 1859–1862.

    Article  CAS  Google Scholar 

  30. Stec W.J., Zon G., Egan W., Stec B. 1984. Automated solid-phase synthesis, separation, and stereochemistry of phosphorothioate analogs of oligodeoxyribonucleotides. J. Am. Chem. Soc. 106, 6077–6079.

    Article  CAS  Google Scholar 

  31. Kupryushkin M.S., Apukhtina V.S., Vasil’eva S.V., Pyshnyi D.V., Stetsenko D.A. 2015. A new simple and convenient method for the preparation of oligonucleotides containing pyrene or cholesterol residues. Izv. Akad. Nauk, Ser. Khim. 64, 1678–1681.

    CAS  Google Scholar 

  32. Levina A.S., Repkova M.N., Chelobanov B.P., Bessudnova E.V., Mazurkova M.A., Stetsenko D.A., Zarytova V.F. 2017. Impact of delivery method on antiviral activity of phosphodiester, phosphorothioate, and phosphoryl guanidine oligonucleotides in MDCK cells infected with H5N1 bird flu virus. Mol. Biol. (Moscow). 51, 633–638.

    Article  CAS  Google Scholar 

  33. Lomzov A.A., Kupryushkin M.S., Shernyukov A.V., Nekrasov M.D., Dovydenko I.S., Stetsenko D.A., Pyshnyi D.V. 2019. Diastereomers of a mono-substituted phosphoryl guanidine trideoxyribonucleotide: isolation and properties. Biochem. Biophys. Res. Commun. 513, 807–811.

    Article  CAS  PubMed  Google Scholar 

  34. Burakova E.A., Derzhalova A.Sh., Chelobanov B.P., Fokina A.A., Stetsenko D.A. 2019. New oligodeoxynucleotide derivatives containing N-(sulfonyl)-phosphoramide groups. Russ. J. Bioorg. Chem. 45, 662–668.

    Article  CAS  Google Scholar 

  35. Derzhalova A., Markov O., Fokina A., Shiohama Y., Zatsepin T., Fujii M., Zenkova M., Stetsenko D. 2021. Novel lipid-oligonucleotide conjugates containing long-chain sulfonyl phosphoramidate groups: synthesis and biological properties. Appl. Sci. 11, 1174.

    Article  CAS  Google Scholar 

  36. Heindl D. Polynucleotide containing a phosphate mimetic. Canadian Patent 2627208, 2006.

  37. Heindl D., Kessler D., Schube A., Thuer W., Giraut A. 2008. Easy method for the synthesis of labeled oligonucleotides. Nucleic Acids Symp. Ser. 52, 405–406.

    Article  CAS  Google Scholar 

  38. Santorelli A., Gothelf K.V. 2022. Conjugation of chemical handles and functional moieties to DNA during solid phase synthesis with sulfonyl azides. Nucleic Acids Res. 50, 7235–7246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Patutina O.A., Gaponova (Miroshnichenko) S.K., Sen’kova A.V., Savin I.A., Gladkikh D.V., Burakova E.A., Fokina A.A., Maslov M.A., Shmendel’ E.V., Wood M.J.A., Vlassov V.V., Altman S., Stetsenko D.A., Zenkova M.A. 2020. Mesyl phosphoramidate backbone modified antisense oligonucleotides targeting miR-21 with enhanced in vivo therapeutic potency. Proc. Natl. Acad. Sci. U. S. A. 117, 32370–32379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hammond S.M., Sergeeva O.V., Melnikov P.A., Zatsepin T.S., Stetsenko D.A., Wood M.J.A. 2021. Mesyl phosphoramidate oligonucleotides as potential splice switching agents: impact of backbone structure on activity and intracellular localization. Nucleic Acid Ther. 31, 190–200.

    Article  CAS  PubMed  Google Scholar 

  41. Anderson B.A., Freestone G.C., Low A., De-Hoyos C.L., Iii W.J.D., Østergaard M.E., Migawa M.T., Fazio M., Wan W.B., Berdeja A., Scandalis E., Burel S.A., Vickers T.A., Crooke S.T., Swayze E.E., Liang X., Seth P.P. 2021. Towards next generation antisense oligonucleotides: mesylphosphoramidate modification improves therapeutic index and duration of effect of gapmer antisense oligonucleotides. Nucleic Acids Res. 49, 9026–9041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang L., Liang X.H., De Hoyos CL., Migawa M., Nichols J.G., Freestone G., Tian J., Seth P.P., Crooke S.T. 2022. The combination of mesyl-phosphoramidate inter-nucleotide linkages and 2'-O-methyl in selected positions in the antisense oligonucleotide enhances the performance of RNaseH1 active PS-ASOs. Nucleic Acid Ther. 32, 5. https://doi.org/10.1089/nat.2022.0005

    Article  CAS  Google Scholar 

  43. Ostanin A.A., Leplina O.Yu., Burakova E.A., Tyrinova T.V., Fokina A.A., Proskurina A.S., Bogachev S.S., Stetsenko D.A., Chernykh E.R. 2020. Phosphate-modified CpG oligonucleotides induce maturation of human myeloid dendritic cells in vitro. Vavilov. Zh. Genet. Sel. 24, 653–660.

    CAS  Google Scholar 

  44. Fokina A., Wang M., Ilyina A., Klabenkova K., Burakova E., Chelobanov B., Stetsenko D. 2018. Analysis of new charge-neutral DNA/RNA analogues phosphoryl guanidine oligonucleotides (PGO) by gel electrophoresis. Anal. Biochem. 555, 9–11.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The work was supported by the Russian Science Foundation (grant no. 22-13-00212), and the Ministry of Science and Higher Education of the Russian Federation (Novosibirsk State University project FSUS-2020-0035).

Author information

Authors and Affiliations

Authors

Contributions

D. E. Patrushev, E. A. Burakova, and S. N. Bizyaev contributed equally to this study.

Corresponding author

Correspondence to D. A. Stetsenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

No experiments on animals or humans were involved.

Additional information

Abbreviations: DMTr, 4,4′-dimethoxytrityl; TEAA, triethylammonium acetate; THIQ, 1,2,3,4-tetrahydroisoquinoline-7-sulfonyl phosphoramidate.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patrushev, D.E., Burakova, E.A., Bizyaev, S.N. et al. New Zwitter-Ionic Oligonucleotides: Preparation and Complementary Binding. Mol Biol 57, 320–328 (2023). https://doi.org/10.1134/S0026893323020164

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893323020164

Keywords:

Navigation