Skip to main content
Log in

Mouse lymphomyeloid cells can function with significantly decreased expression levels of cytochrome c

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Cytochrome c is an indispensable electron carrier in the mitochondrial respiratory chain and also an important mediator of the internal pathway triggering apoptosis. Mice with a complete deficiency of the Cycs gene encoding the somatic cytochrome c die during the embryogenesis. Using the technology of LoxP-cre-dependent tissue-specific recombination, we obtained some mouse strains with significantly reduced expression of cytochrome c in certain cell types (“conditional genetic knockdown”). This knockdown was achieved by abrogation of the normal splicing of the Cycs locus pre-mRNA due to an additional acceptor site inside the stop-cassette neor. Previously, we observed embryonic lethality in homozygous mice with the same knockdown of cytochrome c in all cells of the organism. In the present work we studied two novel mouse strains with conditional knockdown of the Cycs gene in T lymphocytes and macrophages. Somewhat surprisingly, the mice of these two strains under normal conditions were not phenotypically different from the wild-type mice, either on the whole organism level or on the level of activity of individual target cells. Thus, the amount of cytochrome c in lymphomyeloid cells does not affect their development and normal functioning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Skulachev, V. P. (1998) Cytochrome c in the apoptotic and antioxidant cascades, FEBS Lett., 423, 275–280.

    Article  CAS  PubMed  Google Scholar 

  2. Hake, L. E., Kuemmerle, N., Hecht, N. B., Kozak, C. A., Zou, H., Li, Y., Liu, X., and Wang, X. (1994) The genes encoding the somatic and testis-specific isotypes of the mouse cytochrome c genes map to paralogous regions of chromosomes 6 and 2, Genomics, 20, 503–505.

    Article  CAS  PubMed  Google Scholar 

  3. Narisawa, S., Hecht, N. B., Goldberg, E., Boatright, K. M., Reed, J. C., and Millan, J. L. (2002) Testis-specific cytochrome c-null mice produce functional sperm but undergo early testicular atrophy, Mol. Cell Biol., 22, 5554–5562.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Li, K., Li, Y., Shelton, J. M., Richardson, J. A., Spencer, E., Chen, Z. J., Wang, X., and Williams, R. S. (2000) Cytochrome c deficiency causes embryonic lethality and attenuates stress-induced apoptosis, Cell, 101, 389–399.

    Article  CAS  PubMed  Google Scholar 

  5. King, M. P., and Attardi, G. (1989) Human cells lacking mtDNA: repopulation with exogenous mitochondria by complementation, Science, 246, 500–503.

    Article  CAS  PubMed  Google Scholar 

  6. Vempati, U. D., Han, X., and Moraes, C. T. (2009) Lack of cytochrome c in mouse fibroblasts disrupts assembly/stability of respiratory complexes I and IV, J. Biol. Chem., 284, 4383–4391.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Mansfield, K. D., Guzy, R. D., Pan, Y., Young, R. M., Cash, T. P., Schumacker, P. T., and Simon, M. C. (2005) Mitochondrial dysfunction resulting from loss of cytochrome c impairs cellular oxygen sensing and hypoxic HIF-alpha activation, Cell. Metab., 6, 393–399.

    Article  Google Scholar 

  8. Sherman, F., Stewart, J. W., Jackson, M., Gilmore, R. A., and Parker, J. H. (1974) Mutants of yeast defective in iso-1-cytochrome c, Genetics, 77, 255–284.

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Mufazalov, I. A., Kruglov, A. A., Efimov, G. A., Drutskaya, M. S., Penkov, D. N., Kuprash, D. V., and Nedospasov, S. A. (2011) Effects of mutation in the cytochrome c gene and of inhibitors of reactive oxygen species on the accelerated involution of the thymus in mice heterogeneous by the TNF/LT, Ros. Immunolog. Zh., 2, 112–120.

    Google Scholar 

  10. Mufazalov, I. A., Penkov, D. N., Chernyak, B. V., Pletyushkina, O. Yu., Vysokikh, M. Yu., Chertkova, R. V., Kirpichnikov, M. P., Dolgikh, D. A., Kuprash, D. V., Skulachev, V. P., and Nedospasov, S. A. (2009) Embryonal mouse fibroblasts with the K72W mutation in the gene of somatic cytochrome c: obtaining and characteristics, Mol. Biol. (Moscow), 43, 648–656.

    Article  CAS  Google Scholar 

  11. Boltz-Nitulescu, G., Wiltschke, C., Holzinger, C., Fellinger, A., Scheiner, O., Gessl, A., and Forster, O. (1987) Differentiation of rat bone marrow cells into macrophages under the influence of mouse L929 cell supernatant, J. Leukoc. Biol., 41, 83–91.

    CAS  PubMed  Google Scholar 

  12. Chomczynski, P., and Sacchi, N. (1987) Single-step method of RNA isolation by acid guanidinum thiocyanate-phenol-chloroform extraction, Anal. Biochem., 162, 156–159.

    Article  CAS  PubMed  Google Scholar 

  13. Livak, K. J., and Schmittgen, T. D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2ΔΔCT method, Methods, 25, 402–408.

    Article  CAS  PubMed  Google Scholar 

  14. Shilov, E. S., Mufazalov, I. A., Shebzukhov, Yu. V., Zvartsev, R. V., Drutskaya, M. S., and Nedospasov, S. A. (2013) Conditional genetic knockdown of the mouse somatic cytochrome c in lymphomyelid cells, Ros. Immunol. Zh., 4, 361–371.

    Google Scholar 

  15. Kulikov, A. V., Shilov, E. S., Mufazalov, I. A., Gogvadze, V., Nedospasov, S. A., and Zhivotovsky, B. (2012) Cytochrome c: the Achilles’ heel in apoptosis, Cell. Mol. Life Sci., 69, 1787–1797.

    Article  CAS  PubMed  Google Scholar 

  16. Imao, T., and Nagata, S. (2013) Apaf-1- and caspase-8-independent apoptosis, Cell Death Differ., 20, 343–352.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Dudkina, N. V., Kudryashev, M., Stahlberg, H., and Boekema, E. J. (2011) Interaction of complexes I, III, and IV within the bovine respirasome by single particle cryoelectron tomography, Proc. Natl. Acad. Sci. USA, 108, 15196–15200.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Tuominen, E. K., Wallace, C. J., and Kinnunen, P. K. (2002) Phospholipid-cytochrome c interaction: evidence for the extended lipid anchorage, J. Biol. Chem., 277, 8822–8826.

    Article  CAS  PubMed  Google Scholar 

  19. Sinibaldi, F., Howes, B. D., Piro, M. C., Polticelli, F., Bombelli, C., Ferri. T., Coletta, M., Smulevich, G., and Santucci, R. (2010) Extended cardiolipin anchorage to cytochrome c: a model for protein-mitochondrial membrane binding, J. Biol. Inorg. Chem., 15, 689–700.

    Article  CAS  PubMed  Google Scholar 

  20. Lapuente-Brun, E., Moreno-Loshuertos, R., Acin-Perez, R., Latorre-Pellicer, A., Colas, C., Balsa, E., Perales-Clemente, E., Quiros, P., Calvo, E., Rodriguez-Hernandez, M. A., Navas, P., Cruz, R., Carracedo, A., Lopez-Otin, C., Perez-Martos, A., Fernandez-Silva, P., Fernandez-Vizarra, E., and Enriquez, J. A. (2013) Supercomplex assembly determines electron flux in the mitochondrial electron transport chain, Science, 340, 1567–1570.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. S. Shilov or S. A. Nedospasov.

Additional information

Original Russian Text © E. S. Shilov, I. V. Kislyakov, E. A. Gorshkova, R. V. Zvartsev, M. S. Drutskaya, I. A. Mufazalov, V. P. Skulachev, S. A. Nedospasov, 2014, published in Biokhimiya, 2014, Vol. 79, No. 12, pp. 1724–1736.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shilov, E.S., Kislyakov, I.V., Gorshkova, E.A. et al. Mouse lymphomyeloid cells can function with significantly decreased expression levels of cytochrome c . Biochemistry Moscow 79, 1412–1422 (2014). https://doi.org/10.1134/S0006297914120177

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297914120177

Key words

Navigation