Skip to main content
Log in

Niobium Carbide Coatings Grown on Cold Work Tool Steel AISI D3 by Thermomechanical Processing: Characterization, Wear and Corrosion Behaviors

  • NEW SUBSTANCES, MATERIALS, AND COATINGS
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

In this study, niobium carbide (NbC) coatings were grown on AISI D3 cold work tool steel via thermoreactive diffusion (TRD) at 900, 1000 and 1100°C for 2, 4, and 6 h. The microstructures and phase formed, the surface roughnesses, the microhardness and fracture toughness values, and the wear and electrochemical corrosion behavior of the NbC coatings were investigated. Compact, smooth and crack-free NbC layers with 8.75–17.10 µm thickness and 1558–2286 HV0.1 hardness were obtained on the surface of the AISI D3 steel. Depending on the TRD temperature and duration, the NbC coatings improved the wear resistance by up to 5 times and corrosion resistance up to 14 times compared to the untreated alloy. With increasing temperature and duration, the thickness and microhardness values of NbC coatings increased. However, significant changes in wear and corrosion resistance was observed depending on Nb, C, O and Fe contents of NbC coatings rather than thickness and microhardness. The wear resistance was found to depend on fracture toughness as well as hardness. Corrosion resistance depended mostly on the surface roughness and the defects (especially microcracks) present on the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.

Similar content being viewed by others

REFERENCES

  1. Thermochemical Surface Engineering of Steels, Mittemeijer, E.J. and Somers, M.A., Eds., Cambridge: Woodhead Publ., 2014, p. 816.

    Google Scholar 

  2. Çakir, M.V., Prot. Met. Phys. Chem. Surf., 2022, vol. 58, no. 3, p. 562.

    Article  Google Scholar 

  3. Dearnley, P.A., Introduction to Surface Engineering, Cambridge Univ. Press, 2017.

    Book  Google Scholar 

  4. Günen, A., Kanca, Y., Karahan, İ.H., Karakaş, M.S., Gök, M.S., Kanca, E., and Çürük, A., Metall. Mater. Trans. A, 2018, vol. 49, no. 11, p. 5833.

    Article  Google Scholar 

  5. Gunes, I., Ulker, S., and Taktak, S., Prot. Met. Phys. Chem. Surf., 2013, vol. 49, no. 5, p. 567.

    Article  CAS  Google Scholar 

  6. Kayali, Y. and Mertgenç, E., Prot. Met. Phys. Chem. Surf., 2020, vol. 56, no. 1, p. 151.

    Article  Google Scholar 

  7. Kloprogge, J.T., Ponce, C.P., and Loomis, T., The Periodic Table: Nature’s Building Blocks, An Introduction to the Naturally Occurring Elements, Their Origins and Their Uses, Elsevier, 2020, chap. 6.

    Google Scholar 

  8. Keddam, M., Hudáková, M., Ptačinová, J., Kusy, M., and Jurči, P., Prot. Met. Phys. Chem. Surf., 2022, vol. 58, no. 2, p. 347.

    Article  CAS  Google Scholar 

  9. Klug, J.A., Proslier, T., Elam, J.W., Cook, R.E., Hiller, J.M., Claus, H., and Pellin, M.J., J. Phys. Chem. C, 2011, vol. 115, no. 50, p. 25063.

    Article  CAS  Google Scholar 

  10. Wang, L., Sun, J., Kang, B., Li, S., Ji, S., Wen, Z., and Wang, X., J. Power Sources, 2014, vol. 246, p. 775.

    Article  CAS  Google Scholar 

  11. Fals, H.C., Roca, A.S., Fogagnolo, J.B., Fanton, L., Belém, M.J.X., and Lima, C.R.C., J. Therm. Spray Technol., 2020, vol. 29, no. 1, p. 319.

    Article  CAS  Google Scholar 

  12. Constantinescu, S., Ann. Univ. Dunarea Jos Galati, Fasc. IX, 2016, vol. 34, no. 3, p. 36.

    CAS  Google Scholar 

  13. Zhang, K., Wen, M., Meng, Q.N., Hu, C.Q., Li, X., Liu, C., and Zheng, W.T., Surf. Coat. Technol., 2012, vol. 212, p. 185.

    Article  CAS  Google Scholar 

  14. Krelling, A.P., Milan, J.C.G., Costa, C.E.D., Almeida, E.A.D.S., and Galiotto, A., Tecnol. Metal., Mater. Min., 2018, vol. 14, no. 2, p. 133.

    Article  Google Scholar 

  15. Ganji, O., Sajjadi, S.A., Yang, Z.G., and Mirjalili, M., Ceram. Int., 2022, vol. 48, no. 6, p. 7475.

    Article  CAS  Google Scholar 

  16. Soares, C., Mariani, F.E., Casteletti, L.C., Lombardi, A.N., and Totten, G.E., Mater. Perform. Charact., 2017, vol. 6, no. 4, p. 20160093.

    Article  Google Scholar 

  17. Soltani, R., Sohi, M.H., Ansari, M., Haghighi, A., Ghasemi, H.M., and Haftlang, F., Vacuum, 2017, vol. 146, p. 44.

    Article  CAS  Google Scholar 

  18. Amaya, A., Piamba, O., and Olaya, J., Coatings, 2018, vol. 8, no. 6, p. 216.

    Article  Google Scholar 

  19. Sen, U., Thin Solid Films, 2005, vol. 483, nos. 1–2, p. 152.

    Article  CAS  Google Scholar 

  20. Ganji, O., Sajjadi, S.A., Yang, Z.G., Mirjalili, M., and Najari, M.R., Ceram. Int., 2020, vol. 46, no. 16, p. 25320.

    Article  CAS  Google Scholar 

  21. Günen, A., Kanca, E., Karakaş, M.S., Gök, M.S., Kalkandelen, M., Kurt, B., and Karahan, I.H., Surf. Coat. Technol., 2021, vol. 419, p. 127305.

    Article  Google Scholar 

  22. Kurt, B., Günen, A., Kanca, Y., Koç, V., Gök, M.S., Kırar, E., and Askerov, K., JOM, 2018, vol. 70, no. 11, p. 2650.

    Article  CAS  Google Scholar 

  23. Zhang, J., Li, S., Sun, Q., Luo, P., and Sun, Y., Mater. Res. Express, 2019, vol. 6, no. 9, p. 096432.

    Article  CAS  Google Scholar 

  24. Castillejo, F.E., Marulanda, D.M., and Olaya, J.J., Ingeniare. Revista Chilena de Ingeniería, 2014, vol. 22, no. 2, p. 189.

    Article  Google Scholar 

  25. Fernandes, F.A.P., Gallego, J., Picon, C.A., Tremiliosi Filho, G., and Casteletti, L.C., Surf. Coat. Technol., 2015, vol. 279, p. 112.

    Article  CAS  Google Scholar 

  26. Mariani, F.E., Rêgo, G.C., Bonella, P.G., Neto, A.L., Totten, G.E., and Casteletti, L.C., J. Mater. Eng. Perform., 2020, vol. 29, no. 6, p. 3516.

    Article  CAS  Google Scholar 

  27. Mariani, F.E., Takeya, G.S., Lombardi, A.N., Picone, C.A., and Casteletti, L.C., Surf. Coat. Technol., 2020, vol. 397, p. 126050.

    Article  CAS  Google Scholar 

  28. Bahoosh, M., Shahverdi, H.R., and Farnia, A., Eng. Failure Anal., 2018, vol. 92, p. 480.

    Article  CAS  Google Scholar 

  29. Kulka, M., Makuch, N., and Piasecki, A., Surf. Coat. Technol., 2017, vol. 325, p. 515.

    Article  CAS  Google Scholar 

  30. Campos, I., Rosas, R., Figueroa, U., VillaVelázquez, C., Meneses, A., and Guevara, A., Mater. Sci. Eng., A, 2008, vol. 488, nos. 1–2, p. 562.

    Article  Google Scholar 

  31. Günen, A., Keddam, M., Alkan, S., Erdoğan, A., and Çetin, M., Mater. Charact., 2022, vol. 186, p. 111778.

    Article  Google Scholar 

  32. Günen, A., J. Eng. Mater. Technol., 2020, vol. 142, no. 1, p. 011010.

    Article  Google Scholar 

  33. Das, D., Dutta, A.K., and Ray, K.K., Mater. Sci. Eng., A, 2010, vol. 527, no. 9, p. 2182.

    Article  Google Scholar 

  34. Militzer, M. and Garcin, T., in Advanced High Strength Steel, Springer, 2018, p. 11.

    Google Scholar 

  35. Amini, K., Akhbarizadeh, A., and Javadpour, S., Vacuum, 2012, vol. 86, no. 10, p. 1534.

    Article  CAS  Google Scholar 

  36. Luo, S.Y., J. Mater. Process. Technol., 1999, vol. 88, nos. 1–3, p. 122.

    Article  Google Scholar 

  37. Roberts, G.A., Kennedy, R., and Krauss, G., Tool Steels, ASM Int., 1998.

    Book  Google Scholar 

  38. Kim, H., Kang, J.Y., Son, D., Lee, T.H., and Cho, K.M., Mater. Charact., 2015, vol. 107, p. 376.

    Article  CAS  Google Scholar 

  39. Worrell, W.L. and Chipman, J., J. Phys. Chem., 1964, vol. 68, no. 4, p. 860.

    Article  CAS  Google Scholar 

  40. Momeni, M., Kheirandish, S., Saghafian, H., Hedjazi, J., and Momeni, M., Mater. Des. (1980–2015), 2014, vol. 54, p. 742.

  41. Pöckl, G., Proc. 4th ASM Heat Treatment and Surface Engineering Conference in Europe, Florence, 1998.

  42. Günen, A., Soylu, B., and Karakaş, Ö., Surf. Coat. Technol., 2022, vol. 437, p. 128280.

    Article  Google Scholar 

  43. Zhao, X., Togaru, M., Guo, Q., Weinberger, C.R., Lamberson, L., and Thompson, G.B., J. Eur. Ceram. Soc., 2019, vol. 39, no. 16, p. 5167.

    Article  CAS  Google Scholar 

  44. Cuppari, M.G.D.V. and Santos, S.F., Metals, 2016, vol. 6, no. 10, p.250.

    Article  Google Scholar 

  45. Friction, Wear and Wear Protection, Fischer, A. and Bobzin, K., Eds., John Wiley and Sons, 2009, vol. 10.

    Google Scholar 

  46. Günen, A. and Çürük, A., JOM, 2020, vol. 72, no. 2, p. 673.

    Article  Google Scholar 

  47. Döleker, K.M., Erdogan, A., Yener, T., Karaoglanlı, A.C., Uzun, O., Gök, M.S., and Zeytin, S., Surf. Coat. Technol., 2021, vol. 412, p. 127069.

    Article  Google Scholar 

  48. Yener, T., Erdogan, A., Gök, M.S., and Zeytin, S., J. Tribol., 2021, vol. 143, no. 1, p. 011703.

    Article  CAS  Google Scholar 

  49. Filipovic, M., Kamberovic, Z., Korac, M., and Gavrilovski, M., Met. Mater. Int., 2013, vol. 19, no. 3, p. 473.

    Article  CAS  Google Scholar 

  50. Chintha, A.R., Valtonen, K., Kuokkala, V.T., Kundu, S., Peet, M.J., and Bhadeshia, H.K.D.H., Wear, 2019, vol. 428, p. 430.

    Article  Google Scholar 

  51. Lorenzo-Martin, C., Ajayi, O., Erdemir, A., Fenske, G.R., and Wei, R., Wear, 2013, vol. 302, nos. 1–2, p. 963.

    Article  CAS  Google Scholar 

  52. Kulka, M., Makuch, N., Pertek, A., and Piasecki, A., Opt. Laser Technol., 2012, vol. 44, no. 4, p. 872.

    Article  CAS  Google Scholar 

  53. Wang, S.Q., Wei, M.X., Wang, F., and Zhao, Y.T., Tribol. Int., 2010, vol. 43, no. 3, p. 577.

    Article  CAS  Google Scholar 

  54. Wei, M.X., Chen, K.M., Wang, S.Q., and Cui, X.H., Tribol. Lett., 2011, vol. 42, no. 1, p. 1.

    Article  CAS  Google Scholar 

  55. Babilas, R., Łoński, W., Młynarek, K., Bajorek, A., and Radoń, A., Metall. Mater. Trans. A, 2020, vol. 51, no. 8, p. 4215.

    Article  CAS  Google Scholar 

  56. Ejaz, A., Lu, Z., Chen, J., Xiao, Q., Ru, X., Han, G., and Shoji, T., Corros. Sci., 2015, vol. 101, p. 165.

    Article  CAS  Google Scholar 

  57. Wallaert, E., Depover, T., Arafin, M., and Verbeken, K., Metall. Mater. Trans. A, 2014, vol. 45, no. 5, p. 2412.

    Article  CAS  Google Scholar 

  58. Li, J., Wu, J., Wang, Z., Zhang, S., Wu, X., Huang, Y., and Li, X., Int. J. Hydrogen Energy, 2017, vol. 42, no. 34, p. 22175.

    Article  CAS  Google Scholar 

  59. Orjuela, G.A., Rincon, R., and Olaya, J.J., Surf. Coat. Technol., 2014, vol. 259, p. 667.

    Article  Google Scholar 

  60. Nieto, F.E.C., Floréz, J.J.O., and Orjuela, J.E.A., Ingeniare. Revista Chilena de Ingeniería, 2016, vol. 24, no. 2, p. 206.

    Article  Google Scholar 

  61. Günen, A., Kalkandelen, M., Karahan, İ.H., Kurt, B., Kanca, E., Gök, M.S., and Serdar Karakaş, M., J. Eng. Mater. Technol., 2020, vol. 142, no. 4, p. 041008.

    Article  Google Scholar 

  62. Jovičević-Klug, P., Kranjec, T., Jovičević-Klug, M., Kosec, T., and Podgornik, B., Materials, 2021, vol. 14, no. 21, p. 6357.

    Article  Google Scholar 

  63. Rosenfeld, I.L. and Marshakov, I.K., Corrosion, 1964, vol. 20, no. 4, p. 115t.

    Article  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Günen.

Ethics declarations

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Günen, A., Açıkgöz, H.H. & Karahan, İ.H. Niobium Carbide Coatings Grown on Cold Work Tool Steel AISI D3 by Thermomechanical Processing: Characterization, Wear and Corrosion Behaviors. Prot Met Phys Chem Surf 59, 648–670 (2023). https://doi.org/10.1134/S207020512370065X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S207020512370065X

Keywords:

Navigation