Skip to main content
Log in

A Comparative Study on Tribocorrosion Wear Behavior of Boride and Vanadium Carbide Coatings Produced by TRD on AISI D2 Steel

  • NEW SUBSTANCES, MATERIALS AND COATINGS
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

In this study, the surface of AISI D2 steel, which has the most common usage area among cold work tool steels, was coated with boride, vanadium carbide and boron-vanadium carbide layer by thermo-reactive deposition method. Characterization of obtained coatings was determined by scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS), X-ray diffraction (XRD), two-dimensional (2D) surface roughness, microhardness, nanoindentation, and wear tests. Wear tests were carried out in an open-air and 3.5 wt % NaCl environment, taking into account the working conditions of AISI D2 steel, by using a ball-on-disc type tribometer with 10 N applying load and 250 m sliding distance. Characterization results revealed that, boride, carbide, and complex borocarbide coating layers were achieved. The thickness, hardness and elasticity of the obtained coating for boronizing, vanadinizing and borovanadinizing were respectively 124, 20, 98 µm thicknesses, 2176, 2250, 2338 HV hardness and 219, 169, 141 GPa elasticity modules. Depending on improving microhardness and elasticity modulus higher wear resistances were found in both open-air environments and 3.5 wt % NaCl environment than untreated AISI D2 steel. The wear environment is effective on the wear type. A lower friction coefficient and reduced wear rates occurred in 3.5 wt % NaCl environment compared to the open-air environment. In addition, while delamination and oxidative wear mechanisms were observed for coated samples in the open-air environment, delamination and pitting erosion mechanisms were observed in 3.5 wt % NaCl environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. Sista, V., Kahvecioglu, O., Yilmaz, O.L., Erdemir, A., and Timur, S., Thin Solid Films, 2011, vol. 520, no. 5, p. 1582.

    Article  CAS  Google Scholar 

  2. Tang, L., Gao, C. Huang, J., Zhang, H., and Chang, W., Tribol. Int., 2013, vol. 66, p. 165.

    Article  CAS  Google Scholar 

  3. Karakaş, M.S., Surf. Coat. Technol., 2020, vol. 394, p. 125884.

    Article  CAS  Google Scholar 

  4. Mallick, R., Kumar, R., Panda, A., and Sahoo, A.K., Mater. Today, 2020, vol. 26, p. 2685.

    CAS  Google Scholar 

  5. Oliveira, C.K.N., Casteletti, L.C., Neto, A.L., Totten, G.E., and Heck, S.C., Vacuum, 2010, vol. 84, p. 792.

    Article  CAS  Google Scholar 

  6. Yapici, A., Aydin, S.E., Koc, V., Kanca, E., and Yildiz, M., Prot. Met. Phys. Chem. Surf., 2019, vol. 55, no. 2, p. 341.

    Article  CAS  Google Scholar 

  7. Kurt, B., Gunen, A., Kanca, Y., Koc, V., Gok, M.S., Kirar, E., and Askerov, K., JOM, 2018, vol. 70, no. 11, p. 2650.

    Article  CAS  Google Scholar 

  8. Nanesa, H.G. and Jahazi, M., Mater. Sci. Eng., A, 2015, vol. 634, p. 32.

    Article  CAS  Google Scholar 

  9. Nanesa, H.G., Touazine, H., and Jahazi, M., Int. J. Adv. Manuf. Technol., 2016, vol. 85, no. 1, p. 881.

    Article  Google Scholar 

  10. Günen, A., Kurt, B., Milner, P., and Gök, M.S., Int. J. Refract. Met. Hard Met., 2019, vol. 81, p. 333.

    Article  CAS  Google Scholar 

  11. Farrahi, G.H. and Ghadbeigi, H., J. Mater. Process. Technol., 2006, vol. 174, p. 318.

    Article  CAS  Google Scholar 

  12. Cho, K.T., Lee, Y.K., and Lee, W.B., Tribol. Int., 2015, vol. 87, p. 82.

    Article  CAS  Google Scholar 

  13. Bayoumi, M.R. and Abdellatif, A.K., Eng. Fract. Mech., 1995, vol. 51, no. 5, p. 861.

    Article  Google Scholar 

  14. Budynas, R. and Nisbett, K., Shigley’s Mechanical Engineering Design, New York: McGraw-Hill, 2014.

    Google Scholar 

  15. Mittemeijer, E.J. and Somers, M.A.J., Thermochemical Surface Engineering of Steels: Improving Materials Performance, book 62 of Woodhead Publishing Series in Metals and Surface Engineering, Woodhead Publ., 2014.

  16. Davis, J.R., Surface Engineering for Corrosion and Wear Resistance, ASM Int., 2001.

    Book  Google Scholar 

  17. Lemm, J.D., Warmuth, A.R., Pearson, S.R., and Shipway, P.H., Tribol. Int., 2015, vol. 81, p. 258.

    Article  CAS  Google Scholar 

  18. Takeya, G., Mariani, F., Neto, A., Totten, G., and Casteletti, L., Mater. Perform. Charact., 2016, vol. 5, no. 4, p. 396.

    CAS  Google Scholar 

  19. Castillejo, F., Olaya, J.J., and Alfonso, J.E., Coatings, 2019, vol. 9, p. 1.

    Article  CAS  Google Scholar 

  20. Park, K., Kim, J.H., Kim, S., and Kang, N., Metals, 2018, vol. 8, no. 6, p. 400.

    Article  CAS  Google Scholar 

  21. Günen, A., Kalkandelen, M., Gök, M.S., Kanca, E., Kurt, B., Karakaş, M.S., Karahan, İ.H., and Çetin, M., Surf. Coat. Technol., 2020, vol. 402, p. 126402.

    Article  CAS  Google Scholar 

  22. Günen, A., Kanca, E., Karakaş, M.S., Koç, V., Gök, M.S., Kanca, Y., Çürük, A., and Demir, M., Surf. Coat. Technol., 2018, vol. 348, p. 130.

    Article  CAS  Google Scholar 

  23. Arai, T. and Harper, S., in Steel Heat Treating, Fundamentals and Processes, vol. 4 of ASM Handbook, Materials Park, OH: ASM Int., 1991.

  24. Kılınç, B., Cegil, O., Sen, S., and Sen, U., Acta Phys. Pol., A, 2014, vol. 125, no. 2, p. 362.

    Article  Google Scholar 

  25. Castillejo-Nieto, F.E., Olaya-Florez, J.J., and Alfonso, J.E., DYNA, 2015, vol. 82, no. 193, p. 104.

    Article  CAS  Google Scholar 

  26. Shirinbayan, M., Shafyei, A., and Aboutalebi, M.R., Russ. J. Appl. Chem., 2014, vol. 87, no. 12, p. 1930.

    Article  CAS  Google Scholar 

  27. Kurt, B., Onder, E., Carboga, C., and Demirel, B., Pract. Metallogr., 2014, vol. 51, no. 1, p. 32.

    Article  CAS  Google Scholar 

  28. Vadivel, K. and Rudramoorthy, R., Int. J. Adv. Manuf. Technol., 2009, vol. 42, nos. 3–4, p. 222.

    Article  Google Scholar 

  29. Çiçek, A., Ekici, E., Uygur, İ., Akıncıoğlu, S., and Kıvak, T., Uluslararasi Teknol. Bilimler Derg., 2012, vol. 4, no. 1, p. 1.

    Google Scholar 

  30. Ay, G.M. and Celik, O.N., Ind. Lubr. Tribol., 2019, vol. 71, no. 4, p. 548.

    Article  Google Scholar 

  31. Topuz, P., Aydoğmuş, T., and Aydın, Ö., Int. J. Eng. Sci., 2019, vol. 2, no. 1, p. 17.

    Google Scholar 

  32. Bican, O., Bayca, S.U., Ocak-Araz, S., Yamanel, B., and Tanis, N.A., Surf. Rev. Lett., 2020, vol. 27, no. 06, p. 1950157.

    Article  CAS  Google Scholar 

  33. Turgut, S. and Günen, A., J. Mater. Eng. Perform., 2020, vol. 29, no. 11, p. 6997.

    Article  CAS  Google Scholar 

  34. Woydt, M. and Habig, K.H., Tribol. Int., 1989, vol. 22, p. 75.

    Article  CAS  Google Scholar 

  35. Campos, I., Palomar, M., Amador, A., Ganem, R., and Martinez, J., Surf. Coat. Technol., 2006, vol. 201, p. 2438.

    Article  CAS  Google Scholar 

  36. Batista, J.C.A., Matthews, A., and Godoy, C., Surf. Coat. Technol., 2001, vol. 142, p. 1137.

    Article  Google Scholar 

  37. Günen, A., Kanca, E., Demir, M., Er, Y., Sağlam, G., and Gök, M. S., Tribol. Trans., 2017, vol. 60, no. 2, p. 267.

    Article  CAS  Google Scholar 

  38. Gök, M.S., Küçük, Y., Gencel, O., Koç, V., and Brostow, W., Mech. Adv. Mater. Struct., 2011, vol. 18, no. 6, p. 389.

    Article  CAS  Google Scholar 

  39. Panda, J.N., Wong, B.C., Medvedovski, E., and Egberts, P., Tribol. Int., 2021, vol. 153, p. 106666.

    Article  CAS  Google Scholar 

  40. Wang, Y., Yang, Y., Yang, H., Zhang, M., and Qiao, J., J. Alloys Compd., 2017, vol. 725, p. 365.

    Article  CAS  Google Scholar 

  41. Günen, A., Metall. Mater. Trans. A, 2020, vol. 51, no. 2, p. 927.

    Article  CAS  Google Scholar 

  42. Strahin, B.L., Shreeram, D.D., and Doll, G.L., JOM, 2017, vol. 69, no. 7, p. 1160.

    Article  CAS  Google Scholar 

  43. Trevisiol, C., Jourani, A., and Bouvier, S.E., Wear, 2017, vol. 388, p. 101.

    Article  CAS  Google Scholar 

  44. Wu, L., Guo, X., and Zhang, J., Lubricants, 2014, vol. 2, no. 2, p. 66.

    Article  Google Scholar 

  45. Kurt, B., Günen, A., Kanca, Y., Koç, V., Gök, M.S., Kırar, E., and Askerov, K., JOM, 2018, vol. 70, no. 11, p. 2650.

    Article  CAS  Google Scholar 

  46. Hutchings, I. and Shipway, P., Tribology: Friction and Wear of Engineering Materials, Butterworth-Heinemann, 2017.

    Google Scholar 

  47. Enayati, K. and Sayyedan, F.S., Tribol.-Mater., Surf. Interfaces, 2021, vol. 1, p. 1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Veysel Çakir.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çakir, M.V. A Comparative Study on Tribocorrosion Wear Behavior of Boride and Vanadium Carbide Coatings Produced by TRD on AISI D2 Steel. Prot Met Phys Chem Surf 58, 562–573 (2022). https://doi.org/10.1134/S2070205122030042

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205122030042

Keywords:

Navigation