Skip to main content
Log in

Redox Activation of Hydrogen Sulfide, Thiols, and Sulfur in Electrosynthesis of Organic Di- and Polysulfides

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

A novel and efficient method for the synthesis of biologically active organic di-, tri- and tetrasulfides has been proposed. Different methods of redox activation of sulfur, hydrogen sulfide, and thiols in the reactions with organic compounds have been considered. Electrochemical initiation of the reactions of the mediator–H2S–S8 system with cyclohexane, methylcyclohexane, and benzene has occurred to the formation of polysulfides R2Sn (n = 2–4). The application of tetrabutylammonium bromide as a mediator of H2S oxidation has allowed to decrease the anodic overpotential of electrosynthesis. Di- and tetrasulfides have been obtained under anodic activation of the cycloalkanethiols (C5, C6) or thiophenol in the reaction with sulfur. Electroreduction of S8 in the presence of the same thiols has favored the formation of di- and trisulfides. The yield and the ratio of the R5Sn (n = 2–4) depend on the method of redox activation of the thiolating reagent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Steudel, R., Chem. Rev., 2002, vol. 102, no. 11, p. 3905. doi https://doi.org/10.1021/cr010127m

    Article  CAS  PubMed  Google Scholar 

  2. Lee, B.C., Park, B.H., Kim, S.Y., and Lee, Y.J., J. Cell. Biochem., 2011, vol. 112, p. 118. doi https://doi.org/10.1002/jcb.22896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bisen, P.S. and Emerald, M., Curr. Nutr. Food. Sci., 2016. vol. 12, p. 190. doi https://doi.org/10.2174/1573401312666160608121.

    Article  CAS  Google Scholar 

  4. Münchberg, U., Anwar, A., Mecklenburg, S., and Jacob, C., Org. Biol. Chem., 2007, p. 1505. doi https://doi.org/10.1039/B703832A

    Google Scholar 

  5. Pluth, M.D., Bailey, T.S., Hammers, M.D., Hartle, M.D., Henthorn, H.A., and Steiger, A.K., Synlett, 2015, vol. 26, no. 19, p. 2633. doi https://doi.org/10.1055/s-0035-1560638

    Article  CAS  Google Scholar 

  6. Hartle, M.D. and Pluth, M.D., Chem. Soc. Rev., 2016, vol. 45, p. 6108. doi https://doi.org/10.1039/c6cs00212a

  7. Li, L., Rose, P., and Moore, P.K., Annu. Rev. Pharmacol. Toxicol., 2011, vol. 51, p. 169. doi https://doi.org/10.1146/annurev-pharmtox-010510-100505

    Article  CAS  PubMed  Google Scholar 

  8. Gangjee, A., Zeng, Y., Talreja, T., McGuire, J.J., Kisliuk, R.L., and Queener, S.F., J. Med. Chem., 2007, vol. 50, no. 13, p. 3046. doi https://doi.org/10.1021/jm070165j

    Article  CAS  PubMed  Google Scholar 

  9. Ley, S.V. and Thomas, A.W., Angew. Chem. Int. Ed., 2003. vol. 42, no. 44, p. 5400. doi https://doi.org/10.1002/anie.200300594

    Article  CAS  Google Scholar 

  10. Beletskaya, I.P. and Ananikov, V.P., Chem. Rev., 2011, vol. 111, no. 3, p. 1596. doi https://doi.org/10.1021/cr100347k

    Article  CAS  PubMed  Google Scholar 

  11. Zou, L.H., Reball, J., Mottweiler, J., and Bolm, C., Chem. Commun., 2012, vol. 48, p. 11307. doi https://doi.org/10.1002/adsc.201300566

    Article  CAS  Google Scholar 

  12. Tang, R.Y., Xie, Y.X., Xie, Y.L., Xiang, J.N., and Li, J.H., Chem. Commun., 2011, vol. 47, p. 12867. doi https://doi.org/10.1039/C1CC15397H

    Article  CAS  Google Scholar 

  13. Zhao, J., Fang, H., Han, J., Pan, Y., and Li, G., Adv. Synth. Catal., 2014, vol. 356, nos. 11–12, p. 2719. doi https://doi.org/10.1002/adsc.201400032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang, J.-R., Liao, Y.-Y., Deng, J.-C., Feng, K.-Y., Zhang, M., Ning, Y.-Y., Lina, Z.-W., and Tang, R.-Y., Chem. Commun., 2017, vol. 53, p. 7784. doi https://doi.org/10.1039/C7CC03940A

    Article  CAS  Google Scholar 

  15. Gundermann, K.-D. and Humke, K., in Methoden der Organischen Chemie, Klamann, D., Ed., Stuttgart: Thieme, 1985, no. 11, p. 148.

  16. Groom, M. and Block, E., US Patent 8101802, 2012.

    Google Scholar 

  17. Deryagina, E.N., Papernaya, L.K., and Voronkov, M.G., Russ. J. Org. Chem., 1995, vol. 31, p. 580.

    Google Scholar 

  18. Deryagina, E.N. and Papernaya, L.K., Russ. J. Org. Chem., 1997, vol. 33, p. 1113.

    CAS  Google Scholar 

  19. Le Guillanton, G., Sulfur Rep., 1992, vol. 12, p. 405. doi https://doi.org/10.1080/01961779208048949

    Article  Google Scholar 

  20. Berberova, N.T., Shinkar', E.V., Smolyaninov, I.V., and Abdulaeva, V.F., Russ. J. Gen. Chem., 2015, vol. 85, p. 998. doi https://doi.org/10.1134/S1070363215040416

    Article  CAS  Google Scholar 

  21. Berberova, N.T., Shinkar', E.V., Smolyaninov, I.V., Shvetsova, A.V., Sediki, A.B., and Kuz'min, V.V., RF Patent 2614151, 2017; Buyll. Izobret., 2017, no. 9.

    Google Scholar 

  22. Shinkar', E.V., Shvetsova, A.V., Sediki, D.B., and Berberova, N.T., Russ. J. Electrochem., 2015, vol. 51, p. 1046. doi https://doi.org/10.1134/S1023193515110178

    Article  CAS  Google Scholar 

  23. Berberova, N.T., Shinkar', E.V., Smolyaninov, I.V., and Pashenko, K.P., Doklady Chem., 2015, vol. 465, p. 295. doi https://doi.org/10.1134/S0012500815120058

    Article  CAS  Google Scholar 

  24. Francke, R. and Little, R.D., Chem. Soc. Rev., 2014, vol. 43, p. 2492. doi https://doi.org/10.1039/C3CS60464K

    Article  CAS  PubMed  Google Scholar 

  25. Berberova, N.T., Smolyaninov, I.V., Shinkar, E.V., Kuzmin, V.V., Sediki, D.B., and Shvetsova, A.V., Russ. Chem. Bull., 2018, vol. 67, p. 108. doi https://doi.org/10.1007/s11172-018.2044-4

    Article  CAS  Google Scholar 

  26. Berberova, N.T. and Shinkar', E.V., Russ. Chem. Bull., 2000. vol. 49, p. 1178. doi https://doi.org/10.1007/BF02495758

    Article  CAS  Google Scholar 

  27. Robert, J., Anouti, M., Abarbri, M., and Paris, J., J. Chem. Soc. Perkin Trans., 1997, no. 9, p. 1759. doi https://doi.org/10.1039/A700939I

    Google Scholar 

  28. Bianco, C.L., Chavez, T.A., Sosa, V., Saund, S.S., Nhu, N.Q. Nguyen, Tantillo, D.J., Ichimura, A.S., Toscano, J.P., and Fukuto, J.M., Free Rad. Biol. Med., 2016. vol. 101, p. 20. doi https://doi.org/10.1016/j.freeradbiomed.2016.09.020

    Article  CAS  PubMed  Google Scholar 

  29. Bailey, T.S., Zakharov, L.N., and Pluth, M.D., J. Am. Chem. Soc., 2014, vol. 136, p. 10573. doi https://doi.org/10.1021/ja505371z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gitkis, A. and Becker, J.Y., J. Electroanal. Chem., 2006. vol. 593, p. 29. doi https://doi.org/10.1016/j.jelechem.2005.12.011

    Article  CAS  Google Scholar 

  31. Kokorekin, V.A., Yaubasarova, R.R., Neverov, S.V., and Petrosyan, V.A., Mendeleev Commun., 2016, vol. 26, p. 413. doi https://doi.org/10.1016/j.mencom.2016.09.016

    Article  CAS  Google Scholar 

  32. Gitkis, A. and Becker, J.Y., Electrochim. Acta, 2010, vol. 55, p. 5854. doi https://doi.org/10.1016/j.electacta.2010.05.035

    Article  CAS  Google Scholar 

  33. Le Guillanton, G., Do, Q.T., and Elothmani, D., J. Electrochem. Soc., 1996, vol. 143, p. L223. doi https://doi.org/10.1149/1.1837151

    Article  Google Scholar 

  34. Kunugi, A., Kuwamura, K., Inoue, M., Kawamura, Y., and Abe, K., Electrochim. Acta, 1996, vol. 41, p. 1987. doi https://doi.org/10.1016/0013-4686(96)00002-3

    Article  CAS  Google Scholar 

  35. Izumi, I., Yasuzawa, M., and Kunugi, A., Electrochemistry, 2006. vol. 74, p. 691. doi https://doi.org/10.5796/electrochemistry.74.691

    Article  CAS  Google Scholar 

  36. Letichevskaya, N.N., Shinkar', E.V., Berberova, N.T., and Okhlobystin, O.Yu., Russ. J. Gen. Chem., 1996, vol. 66, p. 1739.

    Google Scholar 

  37. Gordon, A.J. and Ford, R.A., The Chemist's Companion, New York: Wiley Intersci. Publ., 1972, p. 541.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. T. Berberova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shinkar’, E.V., Smolyaninov, I.V., Kuzmin, V.V. et al. Redox Activation of Hydrogen Sulfide, Thiols, and Sulfur in Electrosynthesis of Organic Di- and Polysulfides. Russ J Gen Chem 89, 689–696 (2019). https://doi.org/10.1134/S107036321904008X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S107036321904008X

Keywords

Navigation