Skip to main content
Log in

Annual Carbon Budget of Biogenic Greenhouse Gases under Mixed Land Use: Lgov District as a Model Object of the Central Chernozem Zone of Russia

  • SOIL PHYSICS
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

A comprehensive study of the net annual balance of biogenic carbon-containing greenhouse gases has been performed for Lgov administrative district (Kursk oblast) in the chernozem zone of the European part of Russia. The data sources include field estimates of carbon dioxide and methane exchange between soil and atmosphere, above- and below-ground phytomass stocks, models parameterized on these data, official statistical and meteorological information, and published scientific sources. Sugar industry wastewater treatment infiltration fields are responsible for 26% of CH4 emissions from the territory of the district, although they occupy only 0.04% of its area. The maximum of CO2 emission from soils is observed at the soil water content of 30 vol %; above this value, methane emission begins to rise linearly reaching its maximum in waterlogged habitats, including those of infiltration fields. Another significant local source of methane is compost storages (22%). However, water reservoirs, oxbow lakes and ponds are the largest local source of CH4 (43%). Among the main net sources of CO2 emission, the combustion of fossil fuels by transport and agricultural machinery predominates (22.3%). In contrast to methane, whose emission is mainly determined by powerful point sources, the input of net fluxes of CO2 positively correlates with their area. Currently observed relatively small net CO2 flux in the district area (–6.4 g C m–2 per year) is decisively overlapped by local methane sources (+95 g C–CO2 equiv m–2 per year). The influence of the land use and methods of calculation on the C balance of the territory under study and a way of its transformation into a carbon-neutral state are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. D. N. Gar’kusha, Yu. A. Fedorov, N. S. Tambieva, M. L. Krukier, and I. V. Kalmanovich, “Estimation of methane emission from water objects of Rostov oblast,” Izv. Vyssh. Uchebn. Zaved., Sev.-Kavk. Reg., Estestv. Nauki, No. 3, 83–89 (2015).

    Google Scholar 

  2. M. G. Grechushnikova and D. I. Shkol’nyi, “Estimation of methane emissions from reservoirs in Russia,” Vodn. Khoz. Ross., No. 2, 58–71 (2019).

  3. I. V. Zamotaev, R. G. Gracheva, P. V. Mikheev, and Yu. V. Konoplianikova, “Formation and transformation of soils in the areas of sugar industry waste disposal: a review,” Eurasian Soil Sci. 55 (8), 1005–1015 (2022). https://doi.org/10.1134/S1064229322080154

    Article  Google Scholar 

  4. K. V. Koleda, A. A. Duduk, D. A. Brukish, D. M. Boyar, G. V. Vitkovskii, V. N. Emel’yanova, and A. K. Zolotar’, Modern Technologies for Crop Cultivation: Recommendations (Grodn. Gos. Agrar. Inst., Grodno, 2010) [in Russian].

  5. S. F. Kop’ev and N. F. Kachanov, Fundamentals of Heat and Gas Supply and Ventilation (Stroiizdat, Moscow, 1964) [in Russian].

  6. D. I. Lyuri, S. V. Goryachkin, N. A. Karavaeva, E. A. Denisenko, and T. G. Nefedova, Dynamics of Agricultural Land in Russia in the 20th Century and Post-Agrogenic Restoration of Vegetation and Soils (GEOS, Moscow, 2010) [in Russian].

    Google Scholar 

  7. Methodological Instructions and Guidelines for Quantifying Greenhouse Gas Emissions by Organizations Engaged in Economic and Other Activities on the Territory of the Russian Federation, Approved by Order of the Ministry of Natural Resources of Russia dated June 30, 2015. No. 300. https://docs.cntd.ru/document/420287801 (cited January 11, 2023).

  8. Decree of the Ministry of Transport of Russia dated March 14, 2008 No. AM-23-r (as amended on September 30, 2021) “On the implementation of the guidelines “Fuel and Lubricant Consumption Standards in Road Transport”. http://www.consultant.ru/document/cons_ doc_LAW_76009/ (cited January 11, 2023).

  9. Typical Norms for the Production and Consumption of Fuel for Agricultural Mechanized Work. Part I. http:// www.consultant.ru/document/cons_doc_LAW_103596/ (cited January 11, 2023).

  10. Typical Norms for the Production and Consumption of Fuel for Agricultural Mechanized Work. Part II. http://www.consultant.ru/document/cons_doc_LAW_ 136074/ (cited January 11, 2023).

  11. A. A. Titlyanova and S. V. Shibareva, Productivity of Grass Ecosystems: A Guide (Izd. MBA, Moscow, 2020) [in Russian].

    Google Scholar 

  12. L. Aragão, B. Poulter, J. B. Barlow, L. O. Anderson, Y. Malhi, S. Saatchi, O. L. Phillips, E. Gloor, “Environmental change and the carbon balance of Amazonian forests,” Biol. Rev. 89, 913–931 (2014). https://doi.org/10.1111/brv.12088

    Article  Google Scholar 

  13. Y. Bezyk, I. Sówka, and M. Górka, “Assessment of urban CO2 budget: anthropogenic and biogenic inputs,” Urban Clim. 39, 100949 (2021). https://doi.org/10.1016/j.uclim.2021.100949

    Article  Google Scholar 

  14. J. Dolman, A. Shvidenko, D. Schepaschenko, P. Ciais, N. Tchebakova, T. Chen, M. K. van der Molen, L. Belelli Marchesini, T. C. Maximov, S. Maksyutov, and E.-D. Schulze, “An estimate of the terrestrial carbon budget of Russia using inventory-based, eddy covariance and inversion methods,” Biogeosciences 9, 5323–5340 (2012). https://doi.org/10.5194/bg-9-5323-2012

    Article  Google Scholar 

  15. P. Friedlingstein, M. W. Jones, M. O' Sullivan, R. M. Andrew, D. C. E. Bakker, J. Hauck, C. Quéré, et al. “Global carbon budget 2021,” Earth Syst. Sci. Data 14, 1917–2005 (2022). https://doi.org/10.5194/essd-14-1917-2022

    Article  Google Scholar 

  16. D. N. Gar’kusha, Y. A. Fedorov, and N. S. Tambieva, “Emission of methane from the soils of Rostov oblast,” Arid Ecosyst. 1, 223–229 (2011). https://doi.org/10.1134/S2079096111040056

    Article  Google Scholar 

  17. S. L. Gilhespy, S. Anthony, L. Cardenas, D. Chadwick, A. del Prado, C. Li, T. Misselbrook, R. M. Rees, et al., “First 20 years of DNDC (DeNitrification DeComposition): model evolution,” Ecological Modell. 292, 51–62 (2014). https://doi.org/10.1016/j.ecolmodel.2014.09.004

    Article  Google Scholar 

  18. IPCC 2006: Annex 2. Summary of Equations. 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme, Ed. by H. S. Eggleston (IGES, Japan, 2006).

    Google Scholar 

  19. IPCC, 2014: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Ed. by R. K. Pachauri and L. A. Meyer (IPCC, Geneva, 2014).

    Google Scholar 

  20. D. Karelin, S. Goryachkin, E. Zazovskaya, V. Shishkov, A. Pochikalov, A. Dolgikh, A. Sirin, et al., “Greenhouse gas emission from the cold soils of Eurasia in natural settings and under human impact: controls on spatial variability,” Geoderma Reg. 22, 1–18 (2020). https://doi.org/10.1016/j.geodrs.2020.e00290

    Article  Google Scholar 

  21. D. V. Karelin, D. I. Lyuri, S. V. Goryachkin, V. N. Lunin, and A. V. Kudikov, “Changes in the carbon dioxide emission from soils in the course of postagrogenic succession in the chernozems forest-steppe,” Eurasian Soil Sci. 48, 1229–1241 (2015). https://doi.org/10.1134/S1064229315110095

    Article  Google Scholar 

  22. D. V. Karelin, D. G. Zamolodchikov, A. V. Shilkin, S. Yu. Popov, A. S. Kumanyaev, V. O. Lopes de Gerenyu, N. O. Tel’nova, and M. L. Gitarskiy, “The effect of tree mortality on CO2 fluxes in an old-growth spruce forest,” Eur. J. For. Res. 140, 287–305 (2021). https://doi.org/10.1007/s10342-020-01330-3

    Article  Google Scholar 

  23. S. Kull, W. A. Kurz, G. Rampley, G. E. Banfield, R. K. Schivatcheva, and M. J. Apps, Operational-Scale Carbon Budget Model of The Canadian Forest Sector (CBM-CFS3) Version 1.0: User’s Guide (Canadian Forest Service, Northern Forestry Centre, 2007).

    Google Scholar 

  24. I. N. Kurganova, V. O. Lopes de Gereny, V. N. Kudeyarov, and A. T. Zhiengaliyev, “Carbon budgets in the steppe ecosystems of Russia,” Doklady Earth Sci. 485, 450–452 (2019). https://doi.org/10.1134/S1028334X19040238

    Article  Google Scholar 

  25. C. Li, S. Frolking, and T. A. Frolking, “A model of nitrous oxide evolution from soil driven by rainfall events: 1. Model structure and sensitivity,” J. Geophys. Res. 97 (D9), 9759–9776 (1992).

    Article  Google Scholar 

  26. J. Lloyd, O. Kolle, H. Fritsch, S. R. de Freitas, DiasM. A. F. Silva, P. Artaxo, A. D. Nobre, et al., “An airborne regional carbon balance for Central Amazonia,” Biogeosciences 4, 759–768 (2007). https://doi.org/10.5194/bg-4-759-2007

    Article  Google Scholar 

  27. S. Luyssaert, I. Inglima, M. Jung, A. D. Richardson, M. Reichstein, D. Papale, S. L. Piao, et al., “CO2 balance of boreal, temperate, and tropical forests derived from a global database,” Global Change Biol. 13, 2509–2537 (2007). https://doi.org/10.1111/j.1365-2486.2007.01439.x

    Article  Google Scholar 

  28. A. F. Sabrekov, M. V. Glagolev, I. E. Kleptsova, T. Machida, and S. S. Maksyutov, “Methane emission from bog complexes of the west Siberian taiga,” Eurasian Soil Sci. 46, 1182–1193 (2013). https://doi.org/10.1134/S1064229314010098

    Article  Google Scholar 

  29. D. A. Sarzhanov, V. I. Vasenev, I. I. Vasenev, Y. L. Sotnikov, O. V. Ryzhkov, and T. Morin, “Carbon stocks and CO2 emissions of urban and natural soils in Central Chernozemic region of Russia,” Catena 158, 131–140 (2017). https://doi.org/10.1016/j.catena.2017.06.021

    Article  Google Scholar 

  30. M. Schmidt, T. G. Reichenau, P. Fiener, and K. Schneider, “The carbon budget of a winter wheat field: An eddy covariance analysis of seasonal and inter-annual variability,” Agric. For. Meteorol. 165, 114–126 (2012). https://doi.org/10.1016/j.agrformet.2012.05.012

    Article  Google Scholar 

  31. E. D. Schulze, P. Ciais, S. Luyssaert, M. Schrumpf, I. A. Janssens, B. Thiruchittampalam, J. Theloke, M. Saurat, et al., “The European carbon balance. Part 4: Integration of carbon and other trace-gas fluxes,” Global Change Biol. 16 (5), 1451–1469 (2010). https://doi.org/10.1111/j.1365-2486.2010.02215.x

    Article  Google Scholar 

  32. O. E. Sukhoveeva and D. V. Karelin, “Application of the Denitrification-Decomposition (DNDC) model to retrospective analysis of the carbon cycle components in agrolandscapes of the central forest zone of European Russia,” Geogr., Environ., Sustainability 12, 213–226 (2019). https://doi.org/10.24057/2071-9388-2018-85

    Article  Google Scholar 

  33. O. E. Sukhoveeva, A. N. Zolotukhin, and D. V. Karelin, “Climate-determined changes of organic carbon stocks in the arable chernozem of Kursk region,” Arid Ecosyst. 10, 148–155 (2020). https://doi.org/10.1134/S2079096120020122

    Article  Google Scholar 

  34. S. V. Sushko, N. D. Ananyeva, K. V. Ivashchenko, and V. N. Kudeyarov, “Soil CO2 emission, microbial biomass, and basal respiration of chernozems under different land uses,” Eurasian Soil Sci. 52, 1091–1100 (2019). https://doi.org/10.1134/S1064229319090096

    Article  Google Scholar 

  35. I. E. Terentieva, A. F. Sabrekov, D. Ilyasov, A. Ebrahimi, M. V. Glagolev, and S. Maksyutov, “Highly dynamic methane emission from the west Siberian boreal floodplains,” Wetlands 39, 217–226 (2019). https://doi.org/10.1007/s13157-018-1088-4

    Article  Google Scholar 

  36. L. A. Wright, S. Kemp, and I. Williams, “‘Carbon footprinting’: towards a universally accepted definition,” Carbon Manage. 2, 61–72 (2011). https://doi.org/10.4155/cmt.10.39

    Article  Google Scholar 

  37. H. Zhang and L. Wang, “Species diversity and carbon sequestration oxygen release capacity of dominant communities in the Hancang River basin, China,” Sustainability 14, 5405 (2022). https://doi.org/10.3390/su14095405

    Article  Google Scholar 

Download references

ACKNOWLEDGEMENTS

The authors are grateful to all colleagues participated in this study. We are especially grateful to an employee of the Center for Forest Ecology and Productivity of the Russian Academy of Sciences V.I. Grabovskii for his help with calculations using the CBM-CFS3 model.

Funding

This study was financially supported by the Innovative Project of National Importance aimed at creating a unified national monitoring system for climate-active substances in accordance with the Decree of the Government of the Russian Federation no. 25-15r from September 2, 2022. Chromatographic analysis was performed within the framework of state assignment FMGE-2019-0006 of the Institute of Geography, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Karelin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Klyueva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karelin, D.V., Sukhoveeva, O.E., Glagolev, M.V. et al. Annual Carbon Budget of Biogenic Greenhouse Gases under Mixed Land Use: Lgov District as a Model Object of the Central Chernozem Zone of Russia. Eurasian Soil Sc. 56, 1043–1054 (2023). https://doi.org/10.1134/S1064229323600872

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229323600872

Keywords:

Navigation