Skip to main content
Log in

Monitoring Soil Microorganisms with Community-Level Physiological Profiles Using Biolog EcoPlates in Chaohu Lakeside Wetland, East China

  • SOIL BIOLOGY
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

Under the circumstance of wetland degradation, we used Biolog EcoPlatesTM method to investigate the impact of ecological restoration on the function of topsoil microbial communities by monitoring their metabolic diversity around Chaohu lakeside wetland. Four restoration patterns were selected, including reed shoaly land (RL), poplar plantation land (PL), abandoned shoaly grassland (GL) and cultivated flower land (FL). The result showed a rapid growth trend at the initial stage of incubation, following the fastest change rate at 72 h in both dormant and growing seasons. The Average Well Color development (AWCD) values of RL pattern was the highest at the detection points of each culture time, while the GL were the lowest. The calculation of diversity indicators also displayed significant lower McIntosh index in dormant season and Shannon-Wiener index in growing season in GL than in the others (P < 0.05). Carbohydrates and carboxylic acids were found to be the main substrates used in dormant season, whereas amino acids, polymers and phenolic acids were increasingly utilized by the microbial communities in growing season. We observed soil total potassium as the key factor that significantly affected the utilization efficiency of different carbon sources in both seasons (P < 0.05).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. G. Agata, F. Magdalena, and O. Karolina, “The application of the Biolog EcoPlate approach in ecotoxicological evaluation of dairy sewage sludge,” Appl. Biochem. Biotechnol. 174 (4), 1434–1443 (2014). https://doi.org/10.1007/s12010-014-1131-8

    Article  Google Scholar 

  2. F. A. M. Al-Dhabaan and A. H. Bakhali, “Analysis of the bacterial strains using Biolog plates in the contaminated soil from Riyadh community,” Saudi J. Biol. Sci. 24 (4), 901–906 (2016). https://doi.org/10.1016/j.sjbs.2016.01.043

    Article  Google Scholar 

  3. A. Barra Caracciolo, M. A. Bustamante, I. Nogues, M. Di Lenola, M. L. Luprano, and P. Grenni, “Changes in microbial community structure and functioning of a semiarid soil due to the use of anaerobic dig estate derived composts and rosemary plants,” Geoderma 245–246, 89–97 (2015). https://doi.org/10.1016/j.geoderma.2015.01.021

    Article  Google Scholar 

  4. B. Bernal and W. J. Mitsch, “A comparison of soil carbon pools and profiles in wetlands in Costa Rica and Ohio,” Ecol. Eng. 34 (4), 311–323 (2008). https://doi.org/10.1016/j.ecoleng.2008.09.005

    Article  Google Scholar 

  5. X. Cao, C. Song, J. Xiao, and Y. Zhou, “The optimal width and mechanism of riparian buffers for storm water nutrient removal in the Chinese eutrophic lake Chaohu watershed,” Water 10, 1489–1499 (2018). https://doi.org/10.3390/w10101489

    Article  Google Scholar 

  6. Z. Cheng, “The study on ecological restoration modes of wetland landscape based on the natural system: a case study in Chaohu Lake region,” J. Shenyang Jianzhu Univ., Soc. Sci. 17 (2), 122–126 (2015).

    Google Scholar 

  7. V. Feigl, E. Ujaczki, E. Vaszita, and M. Molnar, “Influence of red mud on soil microbial communities: application and comprehensive evaluation of the Biolog EcoPlate approach as a tool in soil microbiological studies,” Sci. Total Environ. 595, 903–911 (2017). https://doi.org/10.1016/j.scitotenv.2017.03.266

    Article  Google Scholar 

  8. P. Galitskaya, L. Biktasheva, A. Saveliev, et al., “Response of soil microorganisms to radioactive oil waste: results from a leaching experiment,” Biogeosciences 12 (2), 1753–1789 (2015). https://doi.org/10.5194/bg-12-3681-2015

    Article  Google Scholar 

  9. J. L. Garland, “Analytical approaches to the characterization of samples of microbial communities using patterns of potential C source utilization,” Soil Biol. Biochem. 28 (2), 213–221 (1996). https://doi.org/10.1016/0038-0717(95)00112-3

    Article  Google Scholar 

  10. P. B. Gundala, P. Chinthala, and B. Sreenivasulu, “A new facultative alkaliphilic, potassium solubilizing, Bacillus sp. SVUNM9 isolated from mica cores of Nellore District, Andhra Pradesh, India. Research and reviews,” J. Microbiol. Biotechnol. 2 (1), 1–7 (2013).

    Google Scholar 

  11. L. Hemrová and Z. Münzbergová, “The effects of plant traits on species' responses to present and historical patch configurations and patch age,” Oikos 124 (4), 437–445 (2015). https://doi.org/10.1111/oik.01130

    Article  Google Scholar 

  12. C. Hou, Effects of Hydrological Changes on Soil Carbon Sequestration of Marsh in Sanjiang Plain (Chinese Academy of Sciences, Beijing, 2012).

    Google Scholar 

  13. S. Hu, D. C. Coleman, C. R. Carroll, P. F. Hendrix, and M. H. Beare, “Labile soil carbon pools in subtropical forest and agricultural ecosystems as influenced by management practices and vegetation types,” Agric. Ecosyst. Environ. 65 (1), 69–78 (1997). https://doi.org/10.1016/s0167-8809(97)00049-2

    Article  Google Scholar 

  14. H. Insam and A. Rangger, “Microbial communities, functional versus structural approaches,” Soil Sci. 163 (6), 511–512 (1997). https://doi.org/10.1097/00010694-199806000-00012

    Article  Google Scholar 

  15. L. Jiang, G. Han, Y. Lan, et al., “Corn cob biochar increases soil culturable bacterial abundance without enhancing their capacities in utilizing carbon sources in Biolog Eco-plates,” J. Integr. Agric. 16 (3), 713–724 (2017). https://doi.org/10.1016/S2095-3119(16)61338-2

    Article  Google Scholar 

  16. M. Jiang, X. Lv, Q. Yang, and S. Tong, “Iron biogeochenical cycle and its environmental effect in wetlands,” Acta Pedol. Sin. 43 (3), 493–499 (2006). https://doi.org/10.11766/trxb200412270320

    Article  Google Scholar 

  17. D. L. Jones, C. Nguyen, and R. D. Finlay, “Carbon flow in the rhizosphere: carbon trading at the soil–root interface,” Plant Soil 321 (1–2), 5–33 (2009). https://doi.org/10.1007/s11104-009-9925-0

    Article  Google Scholar 

  18. D. L. Jones and V. B. Willett, “Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil,” Soil Biol. Biochem. 38 (5), 991–999 (2006). https://doi.org/10.1016/j.soilbio.2005.08.012

    Article  Google Scholar 

  19. J. Knappová and Z. Münzbergová, “Colonization of central European abandoned fields by dry grassland species depends on the species richness of the source habitats: a new approach for measuring habitat isolation,” Landscape Ecol. 27 (1), 97–108 (2012). https://doi.org/10.1007/s10980-011-9680-5

    Article  Google Scholar 

  20. W. Kong, K. Liu, Z. Liao, Y. Zhu, and B. Wang, “Effects of organic matters on metabolic functional diversity of soil microbial community under pot incubation conditions,” Acta Ecol. Sin. 25 (9), 2291–2296 (2005). https://doi.org/10.3321/j.issn:1000-0933.2005.09.022

    Article  Google Scholar 

  21. W. E. Larson, F. J. Pierce, and R. H. Dowdy, “The threat of soil erosion to long-term crop production,” Science 219 (4584), 458–465 (1983). https://doi.org/10.1126/science.219.4584.458

    Article  Google Scholar 

  22. R. Li, “Approach to restoration of water environmental ecosystem in Chaohu lake,” J. Hefei Univ. Technol., Soc. Sci. 16 (5), 130–133 (2002).

    Google Scholar 

  23. S. Li, D. Ma, S. Zang, L. Wang, and H. Sun, “Structural and functional characteristics of soil microbial community in the Songjiang wetland under different interferences,” Acta Ecol. Sin. 38 (22), 7979–7989 (2018). https://doi.org/10.5846/stxb201801240192

    Article  Google Scholar 

  24. Y. Lian, C. Song, L. Wu, L. Huo, and Z. Cai, “Study of wetland classification on the north bank of Chaohu based on GIS and RS,” J. Hefei Univ. Technol., Soc. Sci. 31 (11), 1736–1739 (2008). https://doi.org/10.3724/SP.J.1047.2008.00128

    Article  Google Scholar 

  25. H. Lin, W. Sun, F. Wang, et al., “Effects of heavy metal within organic fertilizers on the microbial community metabolic profile of a vegetable soil after land application,” J. Agro-Environ. Sci. 35 (11), 2123–2130 (2016). https://doi.org/10.11654/jaes.2016-0674

    Article  Google Scholar 

  26. J. Liu, X. Wang, T. Zhang, and X. Li, “Assessment of active bacteria metabolizing phenolic acids in the peanut (Arachis hypogaea L.) rhizosphere,” Microbiol. Res. 205, 118–124 (2017). https://doi.org/10.1016/j.micres.2017.09.005

    Article  Google Scholar 

  27. J. Lopes, V. Peixoto, A. Coutinho, C. Mota, and S. Fernandes, “Determination of the community-level physiological profiles (CLPP) using BiologTM ECO-plates in the river Cávado estuary sediments (Northern Portugal),” in Proceedings of the International Meeting on Marine Research (Peniche, 2016).

  28. Z. Ma, Y. Cai, B. Li, and J. Chen, “Managing wetland habitats for waterbirds: an international perspective,” Wetlands 30 (1), 15–27 (2010). https://doi.org/10.1007/s13157-009-0001-6

    Article  Google Scholar 

  29. V. S. Meena, B. R. Maurya, J. P. Verma, and R. S. Meena, “Potassium solubilizing microorganisms for sustainable agriculture,” in Potassium Solubilizing Microorganisms for Sustainable Agriculture, Ed. by V. S. Meena, (Springer-Verlag, New Delhi, 2016), pp. 1–12. https://doi.org/10.1007/978-81-322-2776-2

    Book  Google Scholar 

  30. W. J. Mitsch, X. Wu, R. W. Nairn, et al., “Creating and restoring wetlands,” Bioscience 48 (12), 1019–1030 (1998).

    Article  Google Scholar 

  31. N. D. Niemuth, K. K. Fleming, and R. E. Reynolds, “Waterfowl conservation in the US Prairie Pothole Region: confronting the complexities of climate change,” PLoS One 9 (6), e100034 (2014). https://doi.org/10.1371/journal.pone.0100034

    Article  Google Scholar 

  32. A. Oest, A. Alsaffar, M. Fenner, D. Azzopardi, and S. M. Tiquia-Arashiro, “Patterns of change in metabolic capabilities of sediment microbial communities along river and lake ecosystems,” Int. J. Microbiol. 2018, 6234931 (2018). https://doi.org/10.1155/2018/6234931

    Article  Google Scholar 

  33. S. M. Paixão, M. C. Sàágua, R. Tenreiro, and A. M. Anselmo, “Assessing microbial communities for a metabolic profile similar to activated sludge,” Water Environ. Res. 79 (5), 536–546 (2007). https://doi.org/10.2175/106143006x123148

    Article  Google Scholar 

  34. E. M. Pankratova, “Functioning of cyanobacteria in soil ecosystems,” Eurasian Soil Sci. 39, S118–S127 (2006). https://doi.org/10.1134/S1064229306130199

    Article  Google Scholar 

  35. J. Preiss and T. Romeo, “Molecular biology and regulatory aspects of glycogen biosynthesis in bacteria,” Prog. Nucleic Acid Res. Mol. Biol. 47, 299–329 (1994). https://doi.org/10.1016/S0079-6603(08)60255-X

    Article  Google Scholar 

  36. P. E. Rasmussen, R. R. Allmaras, C. R. Rohde, and N. C. Roager, “Crop residue influences on soil carbon and nitrogen in a wheat-fallow system,” Soil Sci. Soc. Am. J. 44 (3), 596–600 (1980). https://doi.org/10.2136/sssaj1980.03615995004400030033x

    Article  Google Scholar 

  37. B. Rosenstock and M. Simon, “Consumption of dissolved amino acids and carbohydrates by limnetic bacterioplankton according to molecular weight fractions and proportions bound to humic matter,” Microb. Ecol. 45 (4), 433–443 (2003). https://doi.org/10.1007/s00248-003-3001-8

    Article  Google Scholar 

  38. M. Rutgers, M. Wouterse, S. M. Drost, et al., “Monitoring soil bacteria with community-level physiological profiles using Biolog™ ECO-plates in the Netherlands and Europe,” Appl. Soil Ecol. 97, 23–35 (2016). https://doi.org/10.1016/j.apsoil.2015.06.007

    Article  Google Scholar 

  39. M. M. Sala, J. M. Arrieta, J. A. Boras, C. M. Duarte, and D. Vaqué, “The impact of ice melting on bacterioplankton in the Arctic Ocean,” Polar Biol. 33 (12), 1683–1694 (2010). https://doi.org/10.1007/s00300-010-0808-x

    Article  Google Scholar 

  40. S. Y. Selivanovskaya and P. Y. Galitskaya, “Ecotoxicological assessment of soil using the Bacillus pumilus contact test,” Eur. J. Soil Biol. 47 (2), 165–168 (2011). https://doi.org/10.1016/j.ejsobi.2010.12.001

    Article  Google Scholar 

  41. I. Shoko and T. Chisato, “Effects of dissolved organic matter on toxicity and bioavailability of copper for lettuce sprouts,” Environ. Int. 31 (4), 603–608 (2005). https://doi.org/10.1016/j.envint.2004.10.017

    Article  Google Scholar 

  42. S. Subandi, “Role and management of potassium nutrient for food production in Indonesia,” Pengembangan Inovasi Pertanian 6 (1), 1–10 (2013). http://ejurnal. l-itbang.deptan.go.id/index.php/pip/article/view/1688.

  43. S. M. Tiquia, D. Davis, H. Hadid, et al., “Halophilic and halotolerant bacteria from river waters and shallow groundwater along the Rouge River of southeastern Michigan,” Environ. Technol. 28 (3), 297–307 (2007). https://doi.org/10.1080/09593332808618789

    Article  Google Scholar 

  44. S. M. Tiquia, M. Schleibak, J. Schlaff, et al., “Microbial community profiling and characterization of some heterotrophic bacterial isolates from river waters and shallow groundwater wells along the Rouge River, southeast Michigan,” Environ. Technol. 29 (6), 651–663 (2008). https://doi.org/10.1080/09593330801986998

    Article  Google Scholar 

  45. X. Wang, B. Jiang, M. Yang, and X. Bi, “Ecological and environmental status of Chaohu Lake and protection countermeasures,” Yangtze River 49 (17), 24–30 (2018). https://doi.org/10.16232/j.cnki.1001-4179.2018.17.005

    Article  Google Scholar 

  46. L. Wang, X. Luo, F. Peng, and L. Zhao, “Changes of microbial activity and functional diversity of contaminated soil microbe community in uranium tailings,” Environ. Sci. Technol. 37 (3), 25–31 (2014).

    Google Scholar 

  47. P. Withey and G. C. V. Kooten, “The effect of climate change on optimal wetlands and waterfowl management in Western Canada,” Ecol. Econ. 70 (4), 798–805 (2011). https://doi.org/10.1016/j.ecolecon.2010.11.019

    Article  Google Scholar 

  48. L. Yang, “Ecological restoration and benefit evaluation of the test section of Chaohu Lake wetland,” Anhui-For. Sci. Tech. 41 (5), 45–47 (2015).

    Google Scholar 

  49. Y. H. Yang, J. Yao, S. Hu, and Y. Qi, “Application of rapd in microbial biodiversity identification,” Microb. Ecol. 31 (9), 72–79 (2000). https://doi.org/10.1007/s002489900180

    Article  Google Scholar 

  50. H. Yu, Characteristics of Profile Soil Microbial Community Structure and Function in Poyang Lake Wetland (Nanchang University, Nanchang, 2017). CDMD: 2.1017.233035

  51. J. K. Zarjani, N. Aliasgharzad, S. Oustan, M. Emadi, and A. Ahmadi, “Isolation and characterization of potassium solubilizing bacteria in some Iranian soils,” Arch. Agron. Soil Sci. 59 (12), 1713–1723 (2013). https://doi.org/10.1080/03650340.2012.756977

    Article  Google Scholar 

  52. L. Zhang, S. Shao, C. Liu, T. Xu, and C. Fan, “Forms of nutrients in rivers flowing into Lake Chaohu: a comparison between urban and rural rivers,” Water 16 (3), 4523–4536 (2015). https://doi.org/10.3390/w7084523

    Article  Google Scholar 

  53. T. Y. Zhang, Y. H. Wu, L. L. Zhuang, X. X. Wang, and H. Y. Hu, “Screening heterotrophic microalgal strains by using the Biolog method for biofuel production from organic wastewater,” Algal Res. 6, 175–179 (2014). https://doi.org/10.1016/j.algal.2014.10.003

    Article  Google Scholar 

  54. W. J. Zhou, L. Q. Sha, D. A. Schaefer, et al., “Direct effects of litter decomposition on soil dissolved organic carbon and nitrogen in a tropical rainforest,” Soil Biol. Biochem. 81 (6), 255–258 (2015). https://doi.org/10.1016/j.soilbio.2014.11.0198

    Article  Google Scholar 

  55. X. Zhou and F. Wu, “p-Coumaric acid influenced cucumber rhizosphere soil microbial communities and the growth of Fusarium oxysporum f. sp. cucumerinum Owen,” PLoS One 7 (10), e48288 (2012). https://doi.org/10.1371/journal.pone.0048288

    Article  Google Scholar 

  56. X. Zhou and F. Wu, “Artificially applied vanillic acid changed soil microbial communities in the rhizosphere of cucumber (Cucumis sativus L.),” Can. J. Soil Sci. 93 (1), 13–21 (2013). https://doi.org/10.4141/CJSS2012-039

    Article  Google Scholar 

  57. Y. Zou, J. Ming, X. Yu, et al., “Distribution and biological cycle of iron in freshwater peatlands of Sanjiang Plain, Northeast China,” Geoderma 164 (3), 238–248 (2011). https://doi.org/10.1016/j.geoderma.2011.06.017

    Article  Google Scholar 

  58. Y. C. Zou, X. F. Yu, L. L. Huo, X. G. Lv, and M. Jiang, “Waterborne iron migration by groundwater irrigation pumping in a typical irrigation district of Sanjiang Plain,” Environ. Sci. 33 (4), 1209–1215 (2012).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was funded by the National Natural Science Foundation of China (NSFC, No. 31770672 and 31370626), the Science and Technology Project of Jiangsu Construction System (2019ZD001139), and the Graduate Innovation Foundation of Anhui Agricultural University (2018yjs-18).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhen Teng or Xiaoniu Xu.

Ethics declarations

The authors declare that they have no conflict of interest.

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhen Teng, Fan, W., Wang, H. et al. Monitoring Soil Microorganisms with Community-Level Physiological Profiles Using Biolog EcoPlates in Chaohu Lakeside Wetland, East China. Eurasian Soil Sc. 53, 1142–1153 (2020). https://doi.org/10.1134/S1064229320080141

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229320080141

Keywords:

Navigation