Skip to main content
Log in

The Effect of a Carbon Additive on Compaction of Partially Stabilized Zirconia Powders upon Pressing and Sintering

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

Zirconia ceramics exhibits high functional and strength properties. The range of its application is continuously expanding. The use of nanopowders makes it possible to obtain fine-grained ceramics with improved characteristics. Zirconium dioxide has a high hardness, which ensures increased mold wear. In addition, nanoparticles are prone to agglomeration, which affects compaction upon pressing and sintering. These problems can be solved by introducing microadditives, e.g., carbon. The effect of the type and concentration of a carbon additive on the parameters of zirconia ceramics fabricated from powder raw materials synthesized by sol‒gel and plasma-chemical methods has been explored. The shrinkage of the ceramic samples of two types with carbon additives of three types (multiwalled carbon nanotubes (MWNTs), amorphous carbon, and amorphous carbon with MWCNTs) has been studied by dilatometry. It has been established that the additives do not affect the shrinkage rate and that the highest rate of shrinkage of the sample is almost equal to the shrinkage rate upon sintering of the ceramics without additives. The effect of a carbon additive on the density and microhardness of the ceramics has been determined. It is shown that the additives introduced into the ceramics fabricated from the powders synthesized by the sol‒gel technology reduce the density and microhardness, while the density of the ceramics made of the plasma-chemical powders increases up to a certain additive concentration threshold for carbon of all the types discussed in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. S. Patil and D. R. Patil, Ceram. Int. 48, 21048 (2022).

    Article  Google Scholar 

  2. A. Arena and F. Prete, Nanomaterials 9, 1393 (2019).

    Article  Google Scholar 

  3. S. E. Porozova and A. G. Rogozhnikov, Refract. Ind. Ceram. 61, 659 (2021).

    Article  Google Scholar 

  4. E. Gevorkyan and T. Prikhna, Compos. Struct. 259, 113443 (2021).

    Article  Google Scholar 

  5. Y. Yu and F. Lin, J. Eur. Ceram. Soc. 41, 5269 (2021).

    Article  Google Scholar 

  6. W. Yu and Y. Zheng, Ceram. Int. 47, 25264 (2021).

    Article  Google Scholar 

  7. D. Peng and X. Wang, J. Sol–Gel Sci. Technol. 103, 62 (2022).

    Article  Google Scholar 

  8. S. G. Chuklina and A. I. Pylinina, Russ. J. Phys. Chem. A 91, 862 (2017).

    Article  Google Scholar 

  9. A. Indra and A. B. Putra, Mater. Today Sustain. 17, 100100 (2022).

    Article  Google Scholar 

  10. I. Mysiura and O. Kalantaryan, in Proceedings of the IEEE 7th International Conference Nanomaterials: Application and Properties NAP (2017), p. 02MAN06-1.

  11. Y. Xiong and L. Wang, Key Eng. Mater. 697, 173 (2016).

    Article  Google Scholar 

  12. Z. Di and S. Shimai, Ceram. Int. 45, 12789 (2019).

    Article  Google Scholar 

  13. S. A. Gyngazov and I. P. Vasiljev, Russ. Phys. J. 63, 2037 (2021).

    Article  Google Scholar 

  14. A. O. Zhigachev and V. V. Rodaev, J. Mater. Res. Technol. 8, 6086 (2019).

    Article  Google Scholar 

  15. Y. Ling, X. Hao, S. Zhang, J. Chen, L. Gao, M. Omran, and G. Chen, Ceram. Int. 48, 10547 (2022).

    Article  Google Scholar 

  16. Y. Liu and Y. Fei, Ceram. Int. 48, 18257 (2022).

    Article  Google Scholar 

  17. M. Al-Amin and H. T. Mumu, J. Korean Ceram. Soc. (2022)

  18. A. Kumar and P. Kumar, J. Korean Ceram. Soc. 59, 370 (2022).

    Article  Google Scholar 

  19. B.-K. Jang and J.-H. Lee, Ceram. Int. 47, 35287 (2021).

    Article  Google Scholar 

  20. B. Milsom and H. Porwal, Mater. Des. 133, 325 (2017).

    Article  Google Scholar 

  21. N. Obradovic and F. Kern, Ceram. Int. 44, 16931 (2018).

    Article  Google Scholar 

  22. T. A. G. Restivo and M. Durazzo, J. Therm. Anal. Calorim. 131, 249 (2018).

    Article  Google Scholar 

  23. M. A. Kazakova and S. I. Moseenkov, J. Alloys Compd. 844, 156107 (2020).

    Article  Google Scholar 

  24. A. G. Zherlitsyn and D. V. Korzhenko, Gazov. Prom-st’, No. 11, 777 (2018).

Download references

Funding

This study was supported by the Russian Science Foundation, project no. 22-19-00183.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. A. Ghyngazov, I. P. Vasil’ev or V. A. Boltueva.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Bondareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghyngazov, S.A., Vasil’ev, I.P. & Boltueva, V.A. The Effect of a Carbon Additive on Compaction of Partially Stabilized Zirconia Powders upon Pressing and Sintering. Tech. Phys. Lett. 48, 311–315 (2022). https://doi.org/10.1134/S1063785022110037

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785022110037

Keywords:

Navigation