Skip to main content
Log in

Nonlinear Tunneling of an Electromagnetic Wave through a Plasma Layer

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The propagation of a strong plane electromagnetic wave from vacuum through a bounded plasma layer is considered taking into account nonlinearity under tunneling and transparency conditions. The plasma is considered to be cold and nonmagnetic, and the electromagnetic pulse to be quasi-monochromatic, but short (i.e., not heating the plasma layer during its passage through it). The temperature dependence is not taken into account. The nonlinearity is taken into account phenomenologically as a dependence of the plasma frequency and collision rate on the field square averaged over the period. Associated stationary nonlinear integral equations for field harmonics, as well as a nonlinear integral equation for a nonstationary process, are obtained. The rate and time of tunneling in linear and nonlinear cases, the field distribution, and the third harmonic generation coefficient are determined. It is shown that tunneling takes longer than the passage through a transparent layer, and the nonlinear tunneling is a longer process compared to linear tunneling, while in all cases the time of the wave passage is longer when the time of passage through the equivalent length in vacuum at the speed of light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENES

  1. F. G. Bass and Yu. G. Gurevich, Hot Electrons and Strong Electromagnetic Waves in the Plasma of Semiconductors and Gas Discharge (Nauka, Moscow, 1975) [in Russian].

    Google Scholar 

  2. A. I. Akhiezer, I. A. Akhiezer, R. V. Polovin, A. G. Sitenko, and K. N. Stepanov, Plasma Electrodynamics (Pergamon, New York, 1975).

    Google Scholar 

  3. V. L. Ginzburg, The Propagation of Electromagnetic Waves in Plasmas (Pergamon, London, 1964).

    Google Scholar 

  4. A. V. Gurevich and A. B. Shvartsburg, Nonlinear Theory of Radio Wave Propagation in the Ionosphere (Fizmatgiz, Moscow, 1973) [in Russian].

    Google Scholar 

  5. B. N. Gershman, Dynamics of Ionospheric Plasma (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  6. F. G. Bass, Sov. Phys.-JETP 20 (4), 894 (1965).

    Google Scholar 

  7. F. G. Bass, Yu. G. Gurevich, and M. V. Kvimsadze, Sov. Phys.-JETP 33 (2), 343 (1971).

    ADS  Google Scholar 

  8. M. S. Sodha and P. K. Kaw, Phys. Fluids 8, 1402 (1965). https://doi.org/10.1063/1.1761423

    Article  ADS  Google Scholar 

  9. R. Jancel, Acta Phys. Acad. Sci. Hung. 40 (3), 177 (1976).

    Article  ADS  Google Scholar 

  10. A. E. Kaplan, J. Exp. Theor. Phys. 45 (5), 896 (1977).

    Google Scholar 

  11. V. S. Butylkin, A. E. Kaplan, and Yu. G. Khronopulo, Sov. Phys.-JETP 32 (3), 501 (1971).

    ADS  Google Scholar 

  12. V. S. Butylkin, A. E. Kaplan, and Yu. G. Khronopulo, Sov. Phys.-JETP 34, 276 (1972).

    ADS  Google Scholar 

  13. A. E. Kaplan, Sov. Phys.-JETP 38 (4), 705 (1974).

    ADS  Google Scholar 

  14. A. E. Kaplan, Sov. Phys.-JETP 41 (3), 409 (1975).

    ADS  Google Scholar 

  15. A. E. Kaplan, Sov. J. Quantum Electron. 6 (6), 728 (1976).

    Article  ADS  Google Scholar 

  16. S. A. Kozlov and S. V. Sazonov, J. Exp. Theor. Phys. 84 (2), 221 (1997). https://doi.org/10.1134/1.558109

    Article  ADS  Google Scholar 

  17. L. V. Keldysh, Sov. Phys.-JETP 20 (4), 1018 (1965).

    Google Scholar 

  18. A. B. Shvartsburg, Phys.-Usp. 50 (1), 37 (2007). https://doi.org/10.1070/PU2007v050n01ABEH006148

    Article  Google Scholar 

  19. M. V. Davidovich, Phys.-Usp. 52 (4), 415 (2009). https://doi.org/10.3367/UFNe.0179.200904o.0443

    Article  Google Scholar 

  20. L. A. MacColl, Phys. Rev. 40, 621 (1932).

    Article  ADS  Google Scholar 

  21. F. T. Smith, Phys. Rev. 118, 349 (1960).

    Article  ADS  MathSciNet  Google Scholar 

  22. A. I. Akhiezer and I. A. Akhiezer, Electromagnetism and Electromagnetic Waves (Vysshaya Shkola, Moscow, 1985) [in Russian].

    MATH  Google Scholar 

  23. Landau L. D. and E. M. Lifshitz, Electrodynamics of Continuous Media (Pergamon, New York, 1960).

    MATH  Google Scholar 

  24. M. V. Davidovich, Tech. Phys. 55 (5), 630 (2010). https://doi.org/10.1134/S1063784210050063

    Article  Google Scholar 

  25. Ya. I. Khurgin and V. P. Yakovlev, Finite Functions in Physics and Engineering (Nauka, Moscow, 1971) [in Russian].

    MATH  Google Scholar 

  26. L. A. Khalfin, Phys.-Usp. 39 (6), 639 (1996). https://doi.org/10.1070/PU1996v039n06ABEH001518

    Article  Google Scholar 

  27. L. A. Vainshtein and D. E. Vakman, Separation of Frequencies in Theory of Oscillations and Waves (Nauka, Moscow, 1983) [in Russian].

    Google Scholar 

  28. G. M. Strelkov, J. Commun. Technol. Electron. 53 (9), 1034 (2008). https://doi.org/10.1134/S1064226908090040

    Article  Google Scholar 

  29. M. V. Davidovich and Yu. V. Stefyuk, Izv. Vyssh. Uchebn. Zaved., Prikl. Nelin. Dinam. 18 (3), 160 (2010).

    Google Scholar 

  30. M. V. Davidovich, S. V. Aleksutova, I. V. Shilin, and V. S. Borisov, Izv. Saratovsk. Univ. Nov. Ser. Ser. Fiz. 7 (1), 32 (2007).

    Google Scholar 

  31. M. V. Davidovich, J. Exp. Theor. Phys. 130 (1), 35 (2020). https://doi.org/10.1134/S1063776119120161

    Article  ADS  Google Scholar 

  32. M. V. Davidovich, Vestn. Samarsk. Gos. Tekh. Univ. Ser. Fiz.-Mat. Nauki 24 (1), 22 (2020). https://doi.org/10.14498/vsgtu174

    Article  Google Scholar 

  33. T. E. Hartman, J. Appl. Phys. 33 (12), 3427 (1962). https://doi.org/10.1063/1.1702424

    Article  ADS  Google Scholar 

  34. A. M. Steinberg, Phys. Rev. A 52 (1), 32 (1995). https://doi.org/10.1103/PhysRevA.52.32

    Article  ADS  MathSciNet  Google Scholar 

  35. R. Y. Chiao, A. E. Kozhekin, and G. Kurizki, Phys. Rev. Lett. 77, 1254 (1996).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (project no.16-19-10033) and the Ministry of Education and Science of Russian Federation as part of the State assignment (project no. FSRR-2020-0004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Davidovich.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davidovich, M.V. Nonlinear Tunneling of an Electromagnetic Wave through a Plasma Layer. Tech. Phys. 67, 549–562 (2022). https://doi.org/10.1134/S1063784222080011

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784222080011

Keywords:

Navigation