Skip to main content
Log in

Influence of grain boundaries on the distribution of components in binary alloys

  • Phase Transitions
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Based on the free-energy density functional method (the Cahn–Hilliard equation), a phenomenological model that describes the influence of grain boundaries on the distribution of components in binary alloys has been developed. The model is built on the assumption of the difference between the interaction parameters of solid solution components in the bulk and at the grain boundary. The difference scheme based on the spectral method is proposed to solve the Cahn-Hilliard equation with interaction parameters depending on coordinates. Depending on the ratio between the interaction parameters in the bulk and at the grain boundary, temperature, and alloy composition, the model can give rise to different types of distribution of a dissolved component, namely, either depletion or enrichment of the grain-boundary area, preferential grainboundary precipitation, competitive precipitation in the bulk and at the grain boundary, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Priester, Grain Boundaries: From Theory to Engineering (Springer, Dordrecht, 2013).

    Book  Google Scholar 

  2. V. N. Chuvil’deev, Nonequilibrium Grain Boundary in Metals. Theory and Applications (Fizmatlit, Moscow, 2004) [in Russian].

    Google Scholar 

  3. R. A. Andrievski and A. M. Glezer, Phys. Usp. 52, 315 (2009).

    Article  ADS  Google Scholar 

  4. K. Kelton and A. Greer, Nucleation in Condensed Matter (Elsevier, Amsterdam, 2010).

    Google Scholar 

  5. S. E. Restrepo, S. T. Giraldo, and B. J. Thijsse, Mod. Simul. Mater. Sci. Eng. 21, 055017 (2013).

    Article  ADS  Google Scholar 

  6. K. C. Alexander and C. A. Schuh, Mod. Simul. Mater. Sci. Eng. 24, 065014 (2016).

    Article  ADS  Google Scholar 

  7. S. Bhattacharyya, T. Wook, H. K. Chang, and L.-Q. Chen, Mod. Simul. Mater. Sci. Eng. 19, 035002 (2011).

    Article  ADS  Google Scholar 

  8. M. Javanbakht and V. I. Levitas, Phys. Rev. B 94, 214104 (2016).

    Article  ADS  Google Scholar 

  9. B. S. Bokshtein, V. A. Esin, and A. O. Rodin, Phys. Met. Metallogr. 109, 316 (2010).

    Article  ADS  Google Scholar 

  10. G. Kaptay, J. Mater. Sci. 51, 1738 (2016).

    Article  ADS  Google Scholar 

  11. P. Lejcek, S. Hofmann, and J. Janovec, Mater. Sci. Eng. A 462, 76 (2007).

    Article  Google Scholar 

  12. B. V. Fedoseev and E. N. Fedoseeva, JETP Lett. 97, 408 (2013).

    Article  ADS  Google Scholar 

  13. A. D. Brailsford and H. B. Aaron, J. Appl. Phys. 40, 1702 (1969).

    Article  ADS  Google Scholar 

  14. V. V. Slezov, L. N. Davydov, and V. V. Rogozhkin, Phys. Solid State 37, 1964 (1995).

    ADS  Google Scholar 

  15. V. V. Slezov, L. N. Davydov, and V. V. Rogozhkin, Phys. Solid State 40, 226 (1998).

    Article  ADS  Google Scholar 

  16. M. K. Mitra and M. Muthukumar, J. Chem. Phys. 134, 044901 (2011).

    Article  ADS  Google Scholar 

  17. T. Frolov, M. Asta, and Y. Mishin, Phys. Rev. B 92, 020103(R) (2015).

  18. C. Hin, Y. Brerchet, P. Maugis, and F. Soisson, Acta Mater. 56, 5653 (2008).

    Article  Google Scholar 

  19. A. Umantsev, Field Theoretic Method in Phase Transformations (Springer, New York, 2012).

    Book  MATH  Google Scholar 

  20. I. Steinbach, Mod. Simul. Mater. Sci. Eng. 17, 073001 (2009).

    Article  ADS  Google Scholar 

  21. J. Cahn, Acta Metall. 9, 795 (1961).

    Article  Google Scholar 

  22. P. E. L’vov and V. V. Svetukhin, Phys. Solid State 58, 1432 (2016).

    Article  ADS  Google Scholar 

  23. P. E. L’vov, V. V. Svetukhin, and K. S. Maslov, Tech. Phys. Lett. 42, 856 (2016).

    Article  ADS  Google Scholar 

  24. P. E. L’vov and V. V. Svetukhin, Phys. Solid State 59, 355 (2017).

    Article  ADS  Google Scholar 

  25. S. Dai and Q. Du, J. Comp. Phys. 310, 85 (2016).

    Article  ADS  Google Scholar 

  26. D. Lee, J.-Y. Huh, D. Jeong, J. Shin, A. Yun, and J. Kim, Comp. Mater. Sci. 81, 216 (2014).

    Article  Google Scholar 

  27. D. Scheiber, R. Pippan, P. Puschnig, and L. Romaner, Mod. Simul. Mater. Sci. Eng. 24, 085009 (2016).

    Article  ADS  Google Scholar 

  28. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics (Nauka, Moscow, 1995; Pergamon, Oxford, 1980).

    Google Scholar 

  29. P. E. L’vov and V. V. Svetukhin, Phys. Solid State 57, 1213 (2015).

    Article  ADS  Google Scholar 

  30. C. Zhang and M. Enomoto, Acta Mater. 54, 4183 (2006).

    Article  Google Scholar 

  31. J. W. Cahn and J. E. Hilliard, J. Chem. Phys. 28, 258 (1958).

    Article  ADS  Google Scholar 

  32. P. E. L’vov and V. V. Svetukhin, Phys. Solid State 56, 1889 (2014).

    Article  ADS  Google Scholar 

  33. L.-Q. Chen and J. Shen, Comp. Phys. Commun. 108, 147 (1998).

    Article  ADS  Google Scholar 

  34. J. Zhu, L.-Q. Chen, J. Shen, and V. Takare, Phys. Rev. E 60, 3564 (1999).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. E. L’vov.

Additional information

Original Russian Text © P.E. L’vov, V.V. Svetukhin, 2017, published in Fizika Tverdogo Tela, 2017, Vol. 59, No. 12, pp. 2425–2434.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

L’vov, P.E., Svetukhin, V.V. Influence of grain boundaries on the distribution of components in binary alloys. Phys. Solid State 59, 2453–2463 (2017). https://doi.org/10.1134/S1063783417120253

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783417120253

Navigation