Skip to main content
Log in

Simulation of the decomposition of binary alloys on the basis of the free energy density functional method

  • Phase Transitions
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The simulation of the decomposition of a three-dimensional fragment of a solid solution satisfying the regular solution approximation has been carried out based on the Cahn–Hilliard equation taking into account the Gaussian fluctuations of the initial state of the alloy. The simulation has been performed for several temperatures and revealed the existence of four stages (nucleation, growth, coagulation, and coalescence) of the process. The influence of the temperature on the distribution of phases during the decomposition of binary alloys has been established, and the specific features in the change of stages of the decomposition process have been revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Aaronson, M. Enomoto, and J. Lee, Mechanisms of Diffusional Phase Transformations in Metals and Alloys (CRC Press, Boca Raton, 2010).

    Book  Google Scholar 

  2. K. Kelton and A. Greer, Nucleation in Condensed Matter (Elsevier, Amsterdam, 2010).

    Google Scholar 

  3. S. Novy, P. Pareige, and C. Pareige, J. Nucl. Mater. 384, 96 (2009).

    Article  ADS  Google Scholar 

  4. S. V. Rogozhkin, O. A. Korchuganova, and A. A. Aleev, Perspekt. Mater., No. 2, 17 (2016).

    Google Scholar 

  5. A. Umantsev, Field Theoretic Method in Phase Transformations (Springer-Verlag, New York, 2012).

    Book  MATH  Google Scholar 

  6. J. Cahn, Acta Metall. 9, 795 (1961).

    Article  Google Scholar 

  7. D. Lee, J.-Y. Huh, D. Jeong, J. Shin, A Yun, and J. Kim, Comput. Mater. Sci. 81, 216 (2014).

    Article  Google Scholar 

  8. J. Zhou, J. Odqvist, L. Höglund, M. Thuvander, T. Barkar, and P. Hedstörm, Scr. Mater. 75, 62 (2014).

    Article  Google Scholar 

  9. K. Lichtner and S. H. L. Klapp, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 88, 032301 (2013).

    Article  ADS  Google Scholar 

  10. G. I. Tóth, M. Zarifi, and B. Kvamme, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 93, 013126 (2016).

    Article  ADS  Google Scholar 

  11. P. E. L’vov and V. V. Svetukhin, Phys. Solid State 57 (6), 1213 (2015).

    Article  ADS  Google Scholar 

  12. P. E. L’vov and V. V. Svetukhin, Phys. Solid State 58 (7), 1432 (2016).

    Article  ADS  Google Scholar 

  13. S. V. Rogozhkin, O. A. Korchuganova, and A. A. Aleev, Perspekt. Mater., No. 12, 34 (2015).

    Google Scholar 

  14. A. Chbihi, X. Sauvage, and D. Blavette, Acta Mater. 60, 4575 (2012).

    Article  Google Scholar 

  15. A. Grenier, R. Lardé, E. Cadel, F. Vurpillot, J. Juraszek, J. Teillet, and N. Tiercelin, J. Appl. Phys. 102, 033912 (2007).

    Article  ADS  Google Scholar 

  16. H. E. Cook, Acta Metall. 18, 297 (1970).

    Article  Google Scholar 

  17. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics: Part 1 (Nauka, Moscow, 1976; Butterworth–Heinemann, Oxford, 1980).

    Google Scholar 

  18. L. Q. Chen and J. Shen, Comput. Phys. Commun. 108, 147 (1998).

    Article  ADS  Google Scholar 

  19. M. K. Miller and R. G. Forbes, Atom-Probe Tomography (Springer-Verlag, New York, 2014).

    Book  Google Scholar 

  20. B. S. Everitt, S. Landau, M. Leese, and D. Stahl, Cluster Analysis, 5th ed. (Wiley, New York, 2011).

  21. I. M. Lifshitz and V. V. Slyozov, J. Phys. Chem. Solids 19, 35 (1961).

    Article  ADS  Google Scholar 

  22. S. A. Kukushkin and A. V. Osipov, J. Exp. Theor. Phys. 86 (6), 1201 (1998).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. E. L’vov.

Additional information

Original Russian Text © P.E. L’vov, V.V. Svetukhin, 2017, published in Fizika Tverdogo Tela, 2017, Vol. 59, No. 2, pp. 345–350.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

L’vov, P.E., Svetukhin, V.V. Simulation of the decomposition of binary alloys on the basis of the free energy density functional method. Phys. Solid State 59, 355–361 (2017). https://doi.org/10.1134/S1063783417020160

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783417020160

Navigation