Skip to main content
Log in

Adaptation of the Landau-Migdal quasiparticle pattern to strongly correlated Fermi systems

  • Nuclei
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

A quasiparticle pattern advanced in Landau’s first article on Fermi-liquid theory is adapted to elucidate the properties of a class of strongly correlated Fermi systems characterized by a Lifshitz phase diagram featuring a quantum critical point (QCP) where the density of states diverges. The necessary condition for stability of the Landau Fermi-Liquid state is shown to break down in such systems, triggering a cascade of topological phase transitions that lead, without symmetry violation, to states with multi-connected Fermi surfaces. The end point of this evolution is found to be an exceptional state whose spectrum of single-particle excitations exhibits a completely flat portion at zero temperature. Analysis of the evolution of the temperature dependence of the single-particle spectrum yields results that provide a natural explanation of classical behavior of this class of Fermi systems in the QCP region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V.A. Khodel and V. R. Shaginyan, JETPLett. 51, 553 (1990).

    ADS  Google Scholar 

  2. G. E. Volovik, JETP Lett. 53, 222 (1991).

    ADS  Google Scholar 

  3. P. Nozières, J. Phys. I France 2, 443 (1992).

    Article  Google Scholar 

  4. L. D. Landau, Zh. Eksp. Teor. Fiz. 30, 1058 (1956) [Sov. Phys. JETP 3, 920 (1957)].

    Google Scholar 

  5. L. D. Landau, Zh. Eksp. Teor. Fiz. 35, 97 (1958) [Sov. Phys. JETP 8, 70 (1958)].

    Google Scholar 

  6. A. B. Migdal, Theory of Finite Fermi Systems and Applications to Atomic Nuclei (Wiley, New York, 1967).

    Google Scholar 

  7. A. B. Migdal, Nuclear Theory: The Quasiparticle Method (Benjamin, New York, 1968).

    Google Scholar 

  8. K.-D. Morhard, C. Bäuerle, J. Bossy, et al., J. Low Temp. Phys. 101, 161 (1995).

    Article  ADS  Google Scholar 

  9. K.-D. Morhard, C. Bäuerle, J. Bossy, et al., Phys. Rev. B 53, 2658 (1996).

    Article  ADS  Google Scholar 

  10. C. Bäuerle, Yu.M. Bunkov, A. S. Chen, et al., J. Low Temp. Phys. 110, 333 (1998).

    Article  Google Scholar 

  11. A. Casey, H. Patel, J. Nyéki, et al., Phys. Rev. Lett. 90, 115301 (2003).

    Article  ADS  Google Scholar 

  12. M. Neumann, J. Nyéki, B. P. Cowan, and J. Saunders, Science 317, 1356 (2007).

    Article  ADS  Google Scholar 

  13. P. Coleman, C. Pépin, Q. Si, and R. Ramazashvili, J. Phys.: Condens.Matter 13, R723 (2001).

    Article  ADS  Google Scholar 

  14. H. v. Löhneysen, A. Rosch, M. Vojta, and P. Wölfle, Rev. Mod. Phys. 79, 1015 (2007).

    Article  ADS  Google Scholar 

  15. P. Gegenwart, Q. Si, and F. Steglich, Nature Phys. 4, 186 (2008).

    Article  ADS  Google Scholar 

  16. V. A. Khodel, V. R. Shaginyan, and V. V. Khodel, Phys. Rep. 249, 1 (1994).

    Article  ADS  Google Scholar 

  17. M. V. Zverev and M. Baldo, J. Exp. Theor. Phys. 87, 1129 (1998); J. Phys.: Condens. Matter 11, 2059 (1999).

    Article  ADS  Google Scholar 

  18. S. A. Artamonov, Yu. G. Pogorelov, and V. R. Shaginyan, JETP Lett. 68, 942 (1998).

    Article  ADS  Google Scholar 

  19. M.V. Zverev, V. A. Khodel, and M. Baldo, JETP Lett. 72, 126 (2000).

    Article  ADS  Google Scholar 

  20. M. Baldo, V. V. Borisov, J. W. Clark, V. A. Khodel, and M. V. Zverev, J. Phys.: Condens.Matter 16, 6431 (2004).

    Article  ADS  Google Scholar 

  21. V. R. Shaginyan, JETP Lett. 77, 99 (2003); JETP Lett. 79, 286 (2004).

    Article  ADS  Google Scholar 

  22. J.W. Clark, V. A. Khodel, and M.V. Zverev, Phys. Rev. B 71, 012401 (2005).

    Article  ADS  Google Scholar 

  23. V. A. Khodel, M. V. Zverev, and V. M. Yakovenko, Phys. Rev. Lett. 95, 236402 (2005).

    Article  ADS  Google Scholar 

  24. V. R. Shaginyan, M. Ya. Amusia, and K. G. Popov, Phys. Usp. 50, 563 (2007).

    Article  ADS  Google Scholar 

  25. V. A. Khodel, JETP Lett. 86, 721 (2007).

    Article  ADS  Google Scholar 

  26. V. A. Khodel, J.W. Clark, and M.V. Zverev, Phys. Rev. B 78, 075120 (2008).

    Article  ADS  Google Scholar 

  27. V. A. Khodel, J. W. Clark, and M. V. Zverev, JETP Lett. 90, 628 (2009).

    Article  ADS  Google Scholar 

  28. V. R. Shaginyan, M. Ya. Amusia, A. Z. Msezane, and K. G. Popov, Phys. Rep. 492, 31 (2010).

    Article  ADS  Google Scholar 

  29. H. v. Löhneysen et al., Phys. Rev. Lett. 72, 3262 (1994).

    Article  ADS  Google Scholar 

  30. M. C. Aronson et al., Phys. Rev. Lett. 75, 725 (1995).

    Article  ADS  Google Scholar 

  31. I. Ya. Pomeranchuk, Zh. Eksp. Teor. Fiz. 35, 524 (1958) [Sov. Phys. JETP 8, 361 (1958)].

    Google Scholar 

  32. B. Doniach and S. Engelsberg, Phys. Rev. Lett. 17, 750 (1966).

    Article  ADS  Google Scholar 

  33. A. M. Dyugaev, Sov. Phys. JETP 43, 1247 (1976).

    ADS  Google Scholar 

  34. J. A. Hertz, Phys. Rev. B 14, 1165 (1976).

    Article  ADS  Google Scholar 

  35. A. J. Millis, Phys. Rev. B 48, 7183 (1993).

    Article  ADS  Google Scholar 

  36. A. B. Migdal, Zh. Eksp. Teor. Fiz. 32, 399 (1957) [Sov. Phys. JETP 5, 333 (1957)].

    Google Scholar 

  37. A. I. Larkin and A. B. Migdal, Sov. Phys. JETP 17, 1146 (1963).

    Google Scholar 

  38. L. D. Landau and E.M. Lifshitz, Statistical Physics, Vol. 2 (Pergamon, Oxford, 1980).

    Google Scholar 

  39. A. A. Abrikosov, L. P. Gor’kov, and I. E. Dzyaloshinski, Methods of Quantum Field Theory in Statistical Physics (Prentice-Hall, London, 1963).

    MATH  Google Scholar 

  40. L. P. Pitaevskii, Zh. Eksp. Teor. Fiz. 37, 1794 (1959) [Sov. Phys. JETP 10, 1267 (1959)].

    Google Scholar 

  41. J.W. Clark, V. A. Khodel, and M. V. Zverev, Phys. At. Nucl. 64, 619 (2001).

    Article  Google Scholar 

  42. S. V. Kravchenko and M. P. Sarachik, Rep. Prog. Phys. 67, 1 (2004).

    Article  ADS  Google Scholar 

  43. V. M. Pudalov et al., Phys. Rev. Lett. 88, 196404 (2002).

    Article  ADS  Google Scholar 

  44. A. A. Shashkin, S. V. Kravchenko, V. T. Dolgopolov, and T.M. Klapwijk, Phys. Rev. B 66, 073303 (2002).

    Article  ADS  Google Scholar 

  45. A. A. Shashkin et al., Phys. Rev. Lett. 91, 046403 (2003).

    Article  ADS  Google Scholar 

  46. A. A. Shashkin, Phys. Usp. 48, 129 (2005).

    Article  ADS  Google Scholar 

  47. V.A. Khodel and V. R. Shaginyan, JETPLett. 55, 110 (1992).

    ADS  Google Scholar 

  48. M. V. Zverev, V. A. Khodel, and V. R. Shaginyan, J. Exp. Theor. Phys. 82, 567 (1996).

    ADS  Google Scholar 

  49. V. V. Borisov and M. V. Zverev, JETP Lett. 81, 503 (2005).

    Article  ADS  Google Scholar 

  50. E. Feenberg, Theory of Quantum Fluids (Academic Press, New York, 1969), Ch. 10.

    Google Scholar 

  51. L. D. Landau and S. I. Pekar, Zh. Eksp. Teor. Fiz. 18, 419 (1948).

    Google Scholar 

  52. A. S. Alexandrov and N. Mott, Polarons and Bipolarons (World Sci., Singapore, 1996).

    Google Scholar 

  53. A. S. Alexandrov and P. E. Kornilovitch, Phys. Rev. Lett. 82, 807 (1999).

    Article  ADS  Google Scholar 

  54. S. L. Bud’ko, E. Morosan, and P. C. Canfield, Phys. Rev. B 69, 014415 (2004); Phys. Rev. B 71, 054408 (2005).

    Article  ADS  Google Scholar 

  55. J. Custers, P. Gegenwart, S. Geibel, et al., Phys. Rev. Lett. 104, 186402 (2010).

    Article  ADS  Google Scholar 

  56. A. C. Hewson, The Kondo Problem to Heavy Fermions (Cambridge Univ., Cambridge, 1993).

    Book  Google Scholar 

  57. Q. Si, S. Rabello, K. Ingersent, and J. L. Smith, Nature 413, 804 (2001).

    Article  ADS  Google Scholar 

  58. L. Zhu, S. Kirchner, Q. Si, and A. Georges, Phys. Rev. Lett. 93, 267201 (2004).

    Article  ADS  Google Scholar 

  59. S. Friedemann et al., arXiv:1009.1743 [cond-mat.strel].

  60. K.-S. Kim and C. Pépin, Phys. Rev. B 81, 205108 (2010).

    Article  ADS  Google Scholar 

  61. S.-S. Lee, Phys. Rev. D 79, 086006 (2009).

    Article  ADS  Google Scholar 

  62. L. D. Landau and E.M. Lifshitz, Quantum Mechanics (Pergamon, Oxford, 1980).

    Google Scholar 

  63. G. E. Volovik, Lect. Notes Phys. 718, 31 (2007) [cond-mat/0601372].

    Article  MathSciNet  ADS  Google Scholar 

  64. J. M. Luttinger and J. C. Ward, Phys. Rev. 118, 1417 (1960); J.M. Luttinger, Phys. Rev. 119, 1153 (1960).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  65. V. A. Khodel, J. W. Clark, Haochen Li, and M. V. Zverev, Phys. Rev. Lett. 98, 216404 (2007).

    Article  ADS  Google Scholar 

  66. T. T. Heikkila and G. E. Volovik, arXiv:1011.4185 [cond-mat.str-el].

  67. H. Fröhlich, Phys. Rev. 79, 845 (1950).

    Article  ADS  MATH  Google Scholar 

  68. I.M. Lifshitz, Sov. Phys. JETP 11, 1130 (1960).

    Google Scholar 

  69. M. de Llano and J. P. Vary, Phys. Rev. C 19, 1083 (1979); M. de Llano, A. Plastino, and J. G. Zabolitzky, Phys. Rev. C 20, 2418 (1979).

    Article  ADS  Google Scholar 

  70. V. C. Aguilera-Navarro, R. Barrera, M. de Llano, et al., Phys. Rev. C 25, 560 (1982).

    Article  ADS  Google Scholar 

  71. C. J. Pethick, G. Baym, and H. Monien, Nucl. Phys. A 498, 313 (1989).

    Article  ADS  Google Scholar 

  72. J. Quintanilla and A. J. Schofield, Phys. Rev. B 74, 115126 (2006).

    Article  ADS  Google Scholar 

  73. M. V. Zverev, J. W. Clark, Z. Nussinov, and V. A. Khodel, Phys. Rev. B 82, 125111 (2010).

    Article  ADS  Google Scholar 

  74. A. B. Migdal, Rev. Mod. Phys. 50, 107 (1978).

    Article  ADS  Google Scholar 

  75. A. B. Migdal, E. E. Saperstein, M. A. Troitsky, and D. N. Voskresensky, Phys. Rep. 192, 179 (1990).

    Article  ADS  Google Scholar 

  76. D. N. Voskresensky, V. A. Khodel, M. V. Zverev, and J.W. Clark, Astrophys. J. Lett. 533, L127 (2000).

    Article  ADS  Google Scholar 

  77. M. V. Zverev, V. A. Khodel, V. R. Shaginyan, and M. Baldo, JETP Lett. 65, 863 (1997).

    Article  ADS  Google Scholar 

  78. N. Oeschler, P. Gegenwart, M. Lang, et al., Phys.Rev. Lett. 91, 076402 (2003).

    Article  ADS  Google Scholar 

  79. M. V. Zverev and V. A. Khodel, JETP Lett. 79, 635 (2004).

    Article  ADS  Google Scholar 

  80. A. Golov and F. Pobell, Europhys. Lett. 38, 353 (1997).

    Article  ADS  Google Scholar 

  81. I. M. Khalatnikov, An Introduction to the Theory of Superfluidity (Benjamin, New York, 1965); I. M. Halatnikov and A. A.Abrikosov, Sov. Phys. Usp. 1, 68 (1958).

    Google Scholar 

  82. D. Pines and P. Nozières, Theory of Quantum Liquids (Benjamin, New York, Amsterdam, 1966), Vol. 1.

    Google Scholar 

  83. V. A. Khodel, J. W. Clark, V. R. Shaginyan, and M. V. Zverev, JETP Lett. 92, 532 (2010).

    Article  ADS  Google Scholar 

  84. G. E. Volovik, arXiv:1011.4665 [cond-mat.str-el].

  85. T. T. Heikkila, N. B. Kopnin, and G. E. Volovik, arXiv:1012.0905 [cond-mat.str-el].

  86. F. Guinea, A. H. Castro Neto, and N. M. R. Peres, Phys. Rev. B 73, 245426 (2006).

    Article  ADS  Google Scholar 

  87. A. H. Castro Neto, F. Guinea, N. M. R. Peres, et al., Rev. Mod. Phys. 81, 109 (2009).

    Article  ADS  Google Scholar 

  88. S. E. Sebastian, N. Harrison, M. M. Altarawneh, et al., arXiv:0910.2359 [cond-mat.str-el].

  89. A. M. McCollam, J.-S. Xia, J. Flouquet, et al., Physica B 403, 717 (2008).

    Article  ADS  Google Scholar 

  90. A. A. Abrikosov, Fundamentals of the Theory of Metals (North-Holland, Amsterdam, 1988).

    Google Scholar 

  91. Z. Hossain, C. Geibel, F. Weickert, et al., Phys. Rev. B 72, 094411 (2005).

    Article  ADS  Google Scholar 

  92. J. G. Donath, F. Steglich, E. D. Bauer, et al., Phys. Rev. Lett. 100, 136401 (2008).

    Article  ADS  Google Scholar 

  93. S. H. Naqib, J. R. Cooper, and J. W. Loram, Phys. Rev. B 79, 104519 (2009).

    Article  ADS  Google Scholar 

  94. R. S. Islam, J. R. Cooper, J. W. Loram, and S. H. Naqib, Phys. Rev. B 81, 054511 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Zverev.

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khodel, V.A., Clark, J.W. & Zverev, M.V. Adaptation of the Landau-Migdal quasiparticle pattern to strongly correlated Fermi systems. Phys. Atom. Nuclei 74, 1237–1266 (2011). https://doi.org/10.1134/S1063778811090079

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778811090079

Keywords

Navigation