Skip to main content
Log in

Two scenarios of the quantum critical point

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

Two different scenarios of the quantum critical point (QCP), a zero-temperature instability of the Landau state related to the divergence of the effective mass, are investigated. Flaws of the standard scenario of the QCP, where this divergence is attributed to the occurrence of some second-order phase transition, are demonstrated. Salient features of a different topological scenario of the QCP, associated with the emergence of bifurcation points in the equation ∈(p) = μ that ordinarily determines the Fermi momentum, are analyzed. The topological scenario of the QCP is applied to three-dimensional (3D) Fermi liquids with an attractive current-current interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Doniach and S. Engelsberg, Phys. Rev. Lett. 17, 750 (1966).

    Article  ADS  Google Scholar 

  2. A. M. Dyugaev, Zh. Éksp. Teor. Fiz. 70, 2390 (1976) [Sov. Phys. JETP 43, 1247 (1976)].

    Google Scholar 

  3. P. Coleman, C. Pepin, Q. Si, and R. Ramazashvili, J. Phys.: Condens. Matter 13, R723 (2001).

    Article  ADS  Google Scholar 

  4. P. Coleman and C. Pepin, Physica B (Amsterdam) 312–313, 383 (2002).

    Google Scholar 

  5. L. D. Landau, Zh. Éksp. Teor. Fiz. 30, 1058 (1956) [Sov. Phys. JETP 3, 920 (1956)]; Zh. Éksp. Teor. Fiz. 32, 59 (1957) [Sov. Phys. JETP 5, 101 (1957)].

    Google Scholar 

  6. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics, 3rd ed. (Nauka, Moscow, 1976; Pergamon, Oxford, 1980).

    Google Scholar 

  7. A. A. Abrikosov, L. P. Gor’kov, and I. E. Dzyaloshinskiĭ, Methods of Quantum Field Theory in Statistical Physics (Fizmatgiz, Moscow, 1962; Prentice-Hall, Englewood Cliffs, N.J., 1963).

    Google Scholar 

  8. A. V. Chubukov, V. M. Galitski, and V. M. Yakovenko, Phys. Rev. Lett. 94, 046404 (2005).

    Google Scholar 

  9. V. A. Khodel and M. V. Zverev, JETP Lett. 85, 404 (2007).

    Article  ADS  Google Scholar 

  10. P. Gegenwart, J. Custers, T. Tayama, et al., Acta Phys. Pol. B 34, 323 (2003).

    Google Scholar 

  11. V. A. Khodel and V. R. Shaginyan, JETP Lett. 55, 110 (1992).

    ADS  Google Scholar 

  12. M. V. Zverev, V. A. Khodel, and V. R. Shaginyan, JETP 82, 567 (1996).

    ADS  Google Scholar 

  13. G. E. Volovik, Springer Lect. Notes Phys. 718, 31 (2007), cond-mat/0601372.

    Article  MathSciNet  Google Scholar 

  14. V. V. Borisov and M. V. Zverev, JETP Lett. 81, 503 (2005).

    Article  ADS  Google Scholar 

  15. M. V. Zverev and M. Baldo, JETP 87, 1129 (1998); J. Phys.: Condens. Matter 11, 2059 (1999).

    Article  ADS  Google Scholar 

  16. S. A. Artamonov, V. R. Shaginyan, and Yu. G. Pogorelov, JETP Lett. 68, 942 (1998).

    Article  ADS  Google Scholar 

  17. D. N. Voskresensky, V. A. Khodel, M. V. Zverev, and J. W. Clark, Astrophys. J. 533, L127 (2000).

    Article  ADS  Google Scholar 

  18. J. Quintanilla and A. J. Schofield, Phys. Rev. B 74, 115126 (2006).

    Google Scholar 

  19. C. J. Pethick, G. Baym, and H. Monien, Nucl. Phys. A 498, 313 (1989).

    Article  ADS  Google Scholar 

  20. V. A. Khodel and V. R. Shaginyan, JETP Lett. 51, 553 (1990).

    ADS  Google Scholar 

  21. G. E. Volovik, JETP Lett. 53, 222 (1991).

    ADS  Google Scholar 

  22. P. Nozières, J. Phys. I 2, 443 (1992).

    Article  Google Scholar 

  23. V. A. Khodel, V. V. Khodel, and V. R. Shaginyan, Phys. Rep. 249, 1 (1994).

    Article  ADS  Google Scholar 

  24. V. A. Khodel, M. V. Zverev, and V. M. Yakovenko, Phys. Rev. Lett. 95, 236402 (2005).

    Google Scholar 

  25. V. R. Shaginyan, M. Ya. Amusia, and K. G. Popov, Usp. Fiz. Nauk 177, 585 (2007) [Phys. Usp. 50, 563 (2007)].

    Article  Google Scholar 

  26. D. V. Khveshchenko, R. Hlubina, and T. M. Rice, Phys. Rev. B 48, 10766 (1993).

    Google Scholar 

  27. M. V. Zverev and V. A. Khodel, JETP Lett. 79, 635 (2004).

    Article  ADS  Google Scholar 

  28. Z. Hossain, C. Geibel, F. Weickert, et al., Phys. Rev. B 72, 094411 (2005).

  29. A. B. Migdal, Zh. Éksp. Teor. Fiz. 34, 1438 (1958) [Sov. Phys. JETP 7, 996 (1958)].

    MathSciNet  Google Scholar 

  30. A. A. Shashkin, S. V. Kravchenko, V. T. Dolgopolov, and T. M. Klapwijk, Phys. Rev. B 66, 073303 (2002).

    Google Scholar 

  31. V. M. Pudalov, M. E. Gershenson, H. Kojima, et al., Phys. Rev. Lett. 88, 196404 (2002).

    Google Scholar 

  32. A. A. Shashkin, M. Rahimi, S. Anissimova, et al., Phys. Rev. Lett. 91, 046403 (2002).

    Google Scholar 

  33. A. A. Shashkin, A. A. Kapustin, E. V. Deviatov, and V. T. Dolgopolov, /cond-mat 0706.3552.

  34. A. Punnoose and A. M. Finkelstein, Science 310, 289 (2005).

    Article  ADS  Google Scholar 

  35. C. Bäuerle, Yu. M. Bunkov, A. S. Chen, et al., J. Low Temp. Phys. 110, 333 (1998).

    Article  Google Scholar 

  36. C. Bäuerle, J. Bossy, Yu. M. Bunkov, et al., J. Low Temp. Phys. 110, 345 (1998).

    Article  Google Scholar 

  37. A. Casey, H. Patel, J. Nyeki, et al., Phys. Rev. Lett. 90, 115301 (2003).

  38. M. Neumann, J. Nyeki, B. P. Cowan, and J. Saunders, Science 317, 1356 (2007).

    Article  ADS  Google Scholar 

  39. R. Küchler, N. Oeschler, P. Gegenwart, et al., Phys. Rev. Lett. 91, 066405 (2003).

    Google Scholar 

  40. P. Gegenwart, J. Custers, Y. Tokiwa, et al., Phys. Rev. Lett. 94, 076402 (2005).

  41. S. L. Bud’ko, E. Morosan, and P. C. Canfield, Phys. Rev. B 69, 014415 (2004); Phys. Rev. B 71, 054408 (2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Khodel.

Additional information

The text was submitted by the author in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khodel, V.A. Two scenarios of the quantum critical point. Jetp Lett. 86, 721–726 (2008). https://doi.org/10.1134/S0021364007230087

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364007230087

PACS numbers

Navigation