Skip to main content
Log in

A Hardening Nonlocal Elasticity Approach to Axial Vibration Analysis of an Arbitrarily Supported FG Nanorod

  • Published:
Physical Mesomechanics Aims and scope Submit manuscript

Abstract

The present work is aimed at analyzing free longitudinal vibrations of nanorods composed of a functionally graded (FG) material with deformable boundaries within a hardening nonlocal elasticity approach. For this purpose, a FG nanorod composed of the ceramic and metal constituents is considered to be elastically supported by means of axial springs at both ends. Then the analytical method based on the association of the Fourier sine series and the Stokes transformation is developed to solve the free axial vibration problem of a FG nanorod with both deformable and nondeformable boundaries. Free axial vibration of a restrained FG nanorod is first studied within hardening nonlocal elasticity. To show the validity and profitability of the proposed analytical method, the presented Fourier series method with the Stokes transformation is used for the analysis of axial vibration of a rigidly supported homogeneous nanorod by setting the appropriate spring stiffness values. The main superiority of this new approach is in its power of dealing with numerous boundary conditions to determine longitudinal vibration frequencies of FG nanorods. Using the present solution method, various numerical applications are given for different small-scale parameters, gradient index, and nanorod length.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. Naebe, M. and Shirvanimoghaddam, K., Functionally Graded Materials: A Review of Fabrication and Properties, Appl. Mater. Today, 2016, vol. 5, pp. 223–245. https://doi.org/10.1016/j.apmt.2016.10.001

    Article  Google Scholar 

  2. Timesli, A., Buckling Behavior of SWCNTs and MWCNTs Resting on Elastic Foundations Using an Optimization Technique, Phys. Mesomech., 2022, vol. 25, no. 2, pp. 129–141. https://doi.org/10.1134/S1029959922020047

    Article  Google Scholar 

  3. Uzun, B., Kafkas, U., and Yayli, M.O., Free Vibration Analysis of Nanotube Based Sensors Including Rotary Inertia Based on the Rayleigh Beam and Modified Couple Stress Theories, Microsyst. Technol., 2021, vol. 27, no. 5, pp. 1913–1923. https://doi.org/10.1007/s00542-020-04961-z

    Article  Google Scholar 

  4. Faghidian, S.A., Zur, K.K., and Reddy, J.N., A Mixed Variational Framework for Higher Order Unified Gradient Elasticity, Int. J. Eng. Sci., 2022, vol. 170, p. 103603. https://doi.org/10.1016/j.ijengsci.2021.103603

    Article  Google Scholar 

  5. Civalek, O., Uzun, B., Yayli, M.O., and Akgoz, B., Size-Dependent Transverse and Longitudinal Vibrations of Embedded Carbon and Silica Carbide Nanotubes by Nonlocal Finite Element Method, Eur. Phys. J. Plus, 2020, vol. 135, p. 381. https://doi.org/10.1140/epjp/s13360-020-00385-w

    Article  Google Scholar 

  6. Akgoz, B. and Civalek, Ö., Bending Analysis of Embedded Carbon Nanotubes Resting on an Elastic Foundation Using Strain Gradient Theory, Acta Astronautica, 2016, vol. 119, pp. 1–12. https://doi.org/10.1016/j.actaastro.2015.10.021

    Article  ADS  Google Scholar 

  7. Eltaher, M.A., Abdelrahman, A.A., and Esen, I., Dynamic Analysis of Nanoscale Timoshenko CNTs Based on Doublet Mechanics under Moving Load, Eur. Phys. J. Plus, 2021, vol. 136, no. 7, pp. 1–21. https://doi.org/10.1140/epjp/s13360-021-01682-8

    Article  Google Scholar 

  8. Li, C., Li, S., Yao, L., and Zhu, Z., Nonlocal Theoretical Approaches and Atomistic Simulations for Longitudinal Free Vibration of Nanorods/Nanotubes and Verification of Different Nonlocal Models, Appl. Math. Model., 2015, vol. 39, no. 15, pp. 4570–4585. https://doi.org/10.1016/j.apm.2015.01.013

    Article  MathSciNet  Google Scholar 

  9. Uzun, B., Kafkas, U., and Yayli, M.Ö., Axial Dynamic Analysis of a Bishop Nanorod with Arbitrary Boundary Conditions, ZAMM. J. Appl. Math. Mech., 2020, vol. 100, no. 12. https://doi.org/10.1002/zamm.202000039

  10. Numanoglu, H.M., Akgoz, B., Civalek, Ö., On Dynamic Analysis of Nanorod, Int. J. Eng. Sci., 2018, vol. 130, pp. 33–50. https://doi.org/10.1016/j.ijengsci.2018.05.001

    Article  Google Scholar 

  11. Yayli, M.O., An Efficient Solution Method for the Longitudinal Vibration of Nanorods with Arbitrary Boundary Conditions Via a Hardening Nonlocal Approach, J. Vibr. Control, 2018, vol. 24(11), pp. 2230–2246. https://doi.org/10.1177/1077546316684042

    Article  Google Scholar 

  12. Zur, K.K. and Faghidian, S.A., Analytical and Meshless Numerical Approaches to Unified Gradient Elasticity Theory, Eng. Analys. Bound. Elem., 2021, vol. 130, pp. 238–248. https://doi.org/10.1016/j.enganabound.2021.05.022

    Article  Google Scholar 

  13. Li, L., Hu, Y., and Li, X., Longitudinal Vibration of Size-Dependent Rods Via Nonlocal Strain Gradient Theory, Int. J. Mech. Sci., 2016, vol. 115, pp. 135–144. https://doi.org/10.1016/j.ijmecsci.2016.06.011

    Article  Google Scholar 

  14. Numanoglu, H.M., Ersoy, H., Akgoz, B., and Civalek, Ö., A New Eigenvalue Problem Solver for Thermo-Mechanical Vibration of Timoshenko Nanobeams by an Innovative Nonlocal Finite Element Method, Math. Meth. Appl. Sci., 2021. https://doi.org/10.1002/mma.7942

  15. Sedighi, H.M., Abouelregal, A.E., and Faghidian, S.A., Modified Couple Stress Flexure Mechanics of Nanobeams, Physica Scripta, 2021, vol. 96, no. 11, p. 115402. https://doi.org/10.1088/1402-4896/ac13e2

    Article  ADS  Google Scholar 

  16. Civalek, Ö., Uzun, B., and Yayli, M.Ö., Buckling Analysis of Nanobeams with Deformable Boundaries Via Doublet Mechanics, Arch. Appl. Mech., 2021, vol. 91, no. 12, pp. 4765–4782. https://doi.org/10.1007/s00419-021-02032-x

    Article  ADS  Google Scholar 

  17. Samani, M.S.E. and Beni, Y.T., Size Dependent Thermo-Mechanical Buckling of the Flexoelectric Nanobeam, Mater. Res. Express, 2018, vol. 5(8), p. 085018. https://doi.org/10.1088/2053-1591/aad2ca

    Article  Google Scholar 

  18. Omidian, R., Tadi Beni, Y., and Mehralian, F., Analysis of Size-Dependent Smart Flexoelectric Nanobeams, Eur. Phys. J. Plus, 2017, vol. 132(11), pp. 1–19. https://doi.org/10.1140/epjp/i2017-11749-4

    Article  Google Scholar 

  19. Beni, Z.T. and Beni, Y.T., Dynamic Stability Analysis of Size-Dependent Viscoelastic/Piezoelectric Nano-Beam, Int. J. Struct. Stabil. Dyn., 2022, vol. 22(05), p. 2250050. https://doi.org/10.1142/S021945542250050X

    Article  Google Scholar 

  20. Wang, L., He, X., Sun, Y., and Liew, K.M., A Mesh-Free Vibration Analysis of Strain Gradient Nano-Beams, Eng. Analys. Bound. Elem., 2017, vol. 84, pp. 231–236. https://doi.org/10.1016/j.enganabound.2017.09.001

    Article  Google Scholar 

  21. Yayli, M.Ö., Uzun, B., and Deliktas, B., Buckling Analysis of Restrained Nanobeams Using Strain Gradient Elasticity, Waves Random Complex Media, 2021, pp. 1–20. https://doi.org/10.1080/17455030.2020.1871112

  22. Weng, W., Lu, Y., and Borjalilou, V., Size-Dependent Thermoelastic Vibrations of Timoshenko Nanobeams by Taking into Account Dual-Phase-Lagging Effect, Eur. Phys. J. Plus, 2021, vol. 136(7), pp. 1–26. https://doi.org/10.1140/epjp/s13360-021-01785-2

    Article  Google Scholar 

  23. Fazlali, M., Faghidian, S.A., Asghari, M., and Shodja, H.M., Nonlinear Flexure of Timoshenko–Ehrenfest Nano-Beams Via Nonlocal Integral Elasticity, Eur. Phys. J. Plus, 2020, vol. 135(8), pp. 1–20. https://doi.org/10.1140/epjp/s13360-020-00661-9

    Article  Google Scholar 

  24. Barretta, R., Canadija, M., and Marotti de Sciarra, F., A Higher-Order Eringen Model for Bernoulli–Euler Nanobeams, Arch. Appl. Mech., 2016, vol. 86(3), pp. 483–495. https://doi.org/10.1007/s00419-015-1037-0

    Article  ADS  Google Scholar 

  25. Li, C., Tian, X., and He, T., Size-Dependent Buckling Analysis of Euler–Bernoulli Nanobeam under Non-Uniform Concentration, Arch. Appl. Mech., 2020, vol. 90(9), pp. 1845–1860. https://doi.org/10.1007/s00419-020-01700-8

    Article  ADS  Google Scholar 

  26. Mohammadi, M., Safarabadi, M., Rastgoo, A., and Farajpour, A., Hygro-Mechanical Vibration Analysis of a Rotating Viscoelastic Nanobeam Embedded in a Visco-Pasternak Elastic Medium and in a Nonlinear Thermal Environment, Acta Mechanica, 2016, vol. 227(8), pp. 2207–2232. https://doi.org/10.1007/s00707-016-1623-4

    Article  MathSciNet  Google Scholar 

  27. Attia, M.A. and Emam, S.A., Electrostatic Nonlinear Bending, Buckling and Free Vibrations of Viscoelastic Microbeams Based on the Modified Couple Stress Theory, Acta Mechanica, 2018, vol. 229(8), pp. 3235–3255. https://doi.org/10.1007/s00707-018-2162-y

    Article  MathSciNet  Google Scholar 

  28. Akgoz, B. and Civalek, Ö., A Size-Dependent Shear Deformation Beam Model Based on the Strain Gradient Elasticity Theory, Int. J. Eng. Sci., 2013, vol. 70, pp. 1–14. https://doi.org/10.1016/j.ijengsci.2013.04.004

    Article  Google Scholar 

  29. Rajabi, F. and Ramezani, S., A Nonlinear Microbeam Model Based on Strain Gradient Elasticity Theory with Surface Energy, Arch. Appl. Mech., 2012, vol. 82(3), pp. 363–376. https://doi.org/10.1007/s00419-011-0561-9

    Article  ADS  Google Scholar 

  30. Lounis, A., Youcef, D.O., Bousahla, A.A., Bourada, F., Kaci, A., Heireche, H., Tounsi, Abdeldjebbar, Benrahou, K.H., Tounsi, Abdelouahed, and Hussain, M., Surface Effects and Small-Scale Impacts on the Bending and Buckling of Nanowires Using Various Nonlocal HSDTs, Phys. Mesomech., 2022, vol. 25, no. 1, pp. 42–56. https://doi.org/10.1134/S1029959922010064

    Article  Google Scholar 

  31. Ebrahimi, F., Barati, M.R., and Civalek, Ö., Application of Chebyshev–Ritz Method for Static Stability and Vibration Analysis of Nonlocal Microstructure-Dependent Nanostructures, Eng. Comp., 2020, vol. 36, pp. 953–964. https://doi.org/10.1007/s00366-019-00742-z

    Article  Google Scholar 

  32. Akgoz, B. and Civalek, Ö., Thermo-Mechanical Buckling Behavior of Functionally Graded Microbeams Embedded in Elastic Medium, Int. J. Eng. Sci., 2014, vol. 85, pp. 90–104. https://doi.org/10.1016/j.ijengsci.2014.08.011

    Article  Google Scholar 

  33. Civalek, Ö., Uzun, B., and Yayli, M.Ö., An Effective Analytical Method for Buckling Solutions of a Restrained FGM Nonlocal Beam, Comput. Appl. Math., 2022, vol. 41(2), pp. 1–20. https://doi.org/10.1007/s40314-022-01761-1

    Article  Google Scholar 

  34. Civalek, Ö., Uzun, B., and Yayli, M.Ö., Longitudinal Vibration Analysis of FG Nanorod Restrained with Axial Springs Using Doublet Mechanics, Waves Ran-dom Complex Media, 2021, pp. 1–23. https://doi.org/10.1080/17455030.2021.2000675

  35. Faghidian, S.A., Zur, K.K., Reddy, J.N., and Ferreira, A.J.M., On the Wave Dispersion in Functionally Graded Porous Timoshenko–Ehrenfest Nanobeams Based on the Higher-Order Nonlocal Gradient Elasticity, Compos. Struct., 2022, vol. 279, p. 114819. https://doi.org/10.1016/j.compstruct.2021.114819

    Article  Google Scholar 

  36. Uzun, B. and Yayli, M.Ö., A Solution Method for Longitudinal Vibrations of Functionally Graded Nanorods, Int. J. Eng. Appl. Sci., 2020, vol. 12(2), pp. 78–87. https://doi.org/10.24107/ijeas.782419

    Article  Google Scholar 

  37. Jalaei, M.H., Thai, H.T., and Civalek, Ö., On Viscoelastic Transient Response of Magnetically Imperfect Functionally Graded Nanobeams, Int. J. Eng. Sci., 2022, vol. 172, p. 103629. https://doi.org/10.1016/j.ijengsci.2022.103629

    Article  Google Scholar 

  38. Uzun, B., Civalek, Ö., and Yayli, M.Ö., Vibration of FG Nano-Sized Beams Embedded in Winkler Elastic Foundation and with Various Boundary Conditions, Mech. Based Design Struct. Machin., 2020, pp. 1–20. https://doi.org/10.1080/15397734.2020.1846560

  39. Uzun, B. and Yayli, M.Ö., Nonlocal Vibration Analysis of Ti-6Al-4V/ZrO2 Functionally Graded Nanobeam on Elastic Matrix, Arab. J. Geosci., 2020, vol. 13(4), pp. 1–10. https://doi.org/10.1007/s12517-020-5168-4

    Article  Google Scholar 

  40. Zenkour, A.M. and Radwan, A.F., A Compressive Study for Porous FG Curved Nanobeam under Various Boundary Conditions Via a Nonlocal Strain Gradient Theory, Eur. Phys. J. Plus, 2021, vol. 136(2), p. 248. https://doi.org/10.1140/epjp/s13360-021-01238-w

    Article  Google Scholar 

  41. Esen, I., Daikh, A.A., and Eltaher, M.A., Dynamic Response of Nonlocal Strain Gradient FG Nanobeam Reinforced by Carbon Nanotubes under Moving Point Load, Eur. Phys. J. Plus, 2021, vol. 136(4), pp. 1–22. https://doi.org/10.1140/epjp/s13360-021-01419-7

    Article  Google Scholar 

  42. Dinachandra, M. and Alankar, A., Static and Dynamic Modeling of Functionally Graded Euler–Bernoulli Microbeams Based on Reformulated Strain Gradient Elasticity Theory Using Isogeometric Analysis, Compos. Struct., 2022, vol. 280, p. 114923. https://doi.org/10.1016/j.compstruct.2021.114923

    Article  Google Scholar 

  43. Mollamahmutoglu, C. and Mercan, A., A Novel Functional and Mixed Finite Element Analysis of Functionally Graded Micro-Beams Based on Modified Couple Stress Theory, Compos. Struct., 2019, vol. 223, p. 110950. https://doi.org/10.1016/j.compstruct.2019.110950

    Article  Google Scholar 

  44. Abadi, M.M. and Daneshmehr, A., An Investigation of Modified Couple Stress Theory in Buckling Analysis of Micro Composite Laminated Euler–Bernoulli and Timoshenko Beams, Int. J. Eng. Sci., 2014, vol. 75, pp. 40–53. https://doi.org/10.1016/j.ijengsci.2013.11.009

    Article  Google Scholar 

  45. Arshid, E., Arshid, H., Amir, S., and Mousavi, S.B., Free Vibration and Buckling Analyses of FG Porous Sandwich Curved Microbeams in Thermal Environment under Magnetic Field Based on Modified Couple Stress Theory, Arch. Civil Mech. Eng., 2021, vol. 21(1), pp. 1–23. https://doi.org/10.1007/s43452-020-00150-x

    Article  Google Scholar 

  46. Tang, Y. and Qing, H., Elastic Buckling and Free Vibration Analysis of Functionally Graded Timoshenko Beam with Nonlocal Strain Gradient Integral Model, Appl. Math. Model., 2021, vol. 96, pp. 657–677. https://doi.org/10.1016/j.apm.2021.03.040

    Article  MathSciNet  Google Scholar 

  47. Zenkour, A.M. and Radwan, A.F., A Nonlocal Strain Gradient Theory for Porous Functionally Graded Curved Nanobeams under Different Boundary Conditions, Phys. Mesomech., 2020, vol. 23, no. 6, pp. 601–615. https://doi.org/10.1134/S1029959920060168

    Article  Google Scholar 

  48. Hosseini, S.A.H. and Rahmani, O., Free Vibration of Shallow and Deep Curved FG Nanobeam Via Nonlocal Timoshenko Curved Beam Model, Appl. Phys. A, 2016, vol. 122, p. 169. https://doi.org/10.1007/s00339-016-9696-4

    Article  ADS  Google Scholar 

  49. Mehralian, F. and Beni, Y.T., Vibration Analysis of Size-Dependent Bimorph Functionally Graded Piezoelectric Cylindrical Shell Based on Nonlocal Strain Gradient Theory, J. Brazil. Soc. Mech. Sci. Eng., 2018, vol. 40(1), pp. 1–15. https://doi.org/10.1007/s40430-017-0938-y

    Article  Google Scholar 

  50. Sahmani, S., Safaei, B., and Aldakheel, F., Surface Elastic-Based Nonlinear Bending Analysis of Functionally Graded Nanoplates with Variable Thickness, Eur. Phys. J. Plus, 2021, vol. 136(6), pp. 1–28. https://doi.org/10.1140/epjp/s13360-021-01667-7

    Article  Google Scholar 

  51. Ansari, R., Hasrati, E., Faghih Shojaei, M., Gholami, R., Mohammadi, V., and Shahabodini, A., Size-Dependent Bending, Buckling and Free Vibration Analyses of Microscale Functionally Graded Mindlin Plates Based on the Strain Gradient Elasticity Theory, Lat. Am. J. Solids Struct., 2016, vol. 13(4), pp. 632–664. https://doi.org/10.1590/1679-78252322

    Article  Google Scholar 

  52. Liu, C., Yu, J., Xu, W., Zhang, X., and Wang, X., Dispersion Characteristics of Guided Waves in Functionally Graded Anisotropic Micro/Nano-Plates Based on the Modified Couple Stress Theory, Thin-Walled Struct., 2021, vol. 161, p. 107527. https://doi.org/10.1016/j.tws.2021.107527

    Article  Google Scholar 

  53. Ashrafi Dehkordi, A., Jahanbazi Goojani, R., and Tadi Beni, Y., Porous Flexoelectic Cylindirical Nanoshells Based on the Non-Classical Continuum Theory, Appl. Phys. A, 2022, vol. 128, p. 478. https://doi.org/10.1007/s00339-022-05584-z

    Article  ADS  Google Scholar 

  54. Jiang, Y., Li, L., and Hu, Y., Strain Gradient Elasticity Theory of Polymer Networks, Acta Mech., 2022, vol. 233(8), pp. 3213–3231. https://doi.org/10.1007/s00707-022-03280-w

    Article  MathSciNet  Google Scholar 

  55. Eringen, A.C., On Differential Equations of Nonlocal Elasticity and Solutions of Screw Dislocation and Surface Waves, J. Appl. Phys., 1983, vol. 54(9), pp. 4703–4710. https://doi.org/10.1063/1.332803

    Article  ADS  Google Scholar 

  56. Lim, C.W., Is a Nanorod (or Nanotube) with a Lower Young’s Modulus Stiffer? Is Not Young’s Modulus a Stiffness Indicator?, Sci. China Phys. Mech. Astron., 2010, vol. 53(4), pp. 712–724. https://doi.org/10.1007/s11433-010-0170-6

    Article  ADS  Google Scholar 

  57. Zhang, X., Zheng, S., and Zhou, Y., An Effective Approach for Stochastic Natural Frequency Analysis of Circular Beams with Radially Varying Material Inhomogeneities, Mater. Res. Express, 2019, vol. 6(10), p. 105701. https://doi.org/10.1088/2053-1591/ab361c

    Article  ADS  Google Scholar 

  58. Talha, M. and Singh, B., Static Response and Free Vibration Analysis of FGM Plates Using Higher Order Shear Deformation Theory, Appl. Math. Model., 2010, vol. 34(12), pp. 3991–4011. https://doi.org/10.1016/j.apm.2010.03.034

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to B. Uzun or Ö. Civalek.

Additional information

Translated from Fizicheskaya Mezomekhanika, 2023, Vol. 26, No. 1, pp. 60–77.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uzun, B., Civalek, Ö. & Yayli, M.Ö. A Hardening Nonlocal Elasticity Approach to Axial Vibration Analysis of an Arbitrarily Supported FG Nanorod. Phys Mesomech 26, 295–312 (2023). https://doi.org/10.1134/S1029959923030050

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1029959923030050

Keywords:

Navigation