Skip to main content
Log in

Dynamic analysis of nanoscale Timoshenko CNTs based on doublet mechanics under moving load

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The novelty of this article is to investigate the dynamic behavior and response of armchair and zigzag carbon nanotubes (CNTs) under the dynamic moving load using a bottom to up modeling nano-mechanics theory. CNTs are modeled as a Timoshenko beam structure with shear deformation effect, and the size influence of CNTs imposed using the doublet mechanics theory. Hamiltonian principle is used to derive the modified equation of motion and nonclassical boundary conditions of CNTs under moving loads. Analytical Navier method solution for simply supported CNTs beam and Newmark time integration method are developed to predict the response of the structure in time-domain. The proposed model is verified and proved with previously published works for free vibration. Parametric analysis is performed to illustrate the influence of doublet length scale, structures of CNTs, load velocities, and mass of the load on the dynamic responses of CNTs. The proposed model is useful in designing and analyzing of MEMS/NEMS, nano-sensor, and nano-actuator manufactured from CNTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

This manuscript has associated data in a data repository. [Authors’ comment: The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request].

References

  1. R. Dingreville, J. Qu, M. Cherkaoui, Surface free energy and its effect on the elastic behavior of nano-sized particles, wires and films. J. Mech. Phys. Solids 53(8), 1827–1854 (2005). https://doi.org/10.1016/j.jmps.2005.02.012

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. S. Iijima, Helical microtubules of graphitic carbon. Nature 354(6348), 56–58 (1991). https://doi.org/10.1038/354056a0

    Article  ADS  Google Scholar 

  3. M.A. Eltaher, M.A. Agwa, F.F. Mahmoud, Nanobeam sensor for measuring a zeptogram mass. Int. J. Mech. Mater. Des. 12(2), 211–221 (2016). https://doi.org/10.1007/s10999-015-9302-5

    Article  Google Scholar 

  4. M.A. Eltaher, M.A. Agwa, Analysis of size-dependent mechanical properties of CNTs mass sensor using energy equivalent model. Sens. Actuators, A 246, 9–17 (2016). https://doi.org/10.1016/j.sna.2016.05.009

    Article  Google Scholar 

  5. M.A. Eltaher, N. Mohamed, Nonlinear stability and vibration of imperfect CNTs by Doublet mechanics. Appl. Math. Comput. 382, 125311 (2020). https://doi.org/10.1016/j.amc.2020.125311

    Article  MathSciNet  MATH  Google Scholar 

  6. M.S. Friedrichs, P. Eastman, V. Vaidyanathan, M. Houston, S. Legrand, A.L. Beberg, V.S. Pande, Accelerating molecular dynamic simulation on graphics processing units. J. Comput. Chem. 30(6), 864–872 (2009). https://doi.org/10.1002/jcc.21209

    Article  Google Scholar 

  7. F. Mehralian, Y.T. Beni, Y. Kiani, Thermal buckling behavior of defective CNTs under pre-load: a molecular dynamics study. J. Mol. Graph. Model. 73, 30–35 (2017). https://doi.org/10.1016/j.jmgm.2017.01.017

    Article  Google Scholar 

  8. M. Mirnezhad, R. Ansari, S.R. Falahatgar, Quantum effects on the mechanical properties of fine-scale CNTs: an approach based on DFT and molecular mechanics model. The European Physical Journal Plus 135(11), 1–71 (2020). https://doi.org/10.1140/epjp/s13360-020-00878-8

    Article  Google Scholar 

  9. D.C. Rapaport, The event scheduling problem in molecular dynamic simulation. J. Comput. Phys. 34(2), 184–201 (1980). https://doi.org/10.1016/0021-9991(80)90104-7

    Article  ADS  Google Scholar 

  10. L.G. Zhou, S.Q. Shi, Molecular dynamic simulations on tensile mechanical properties of single-walled carbon nanotubes with and without hydrogen storage. Comput. Mater. Sci. 23(1–4), 166–174 (2002). https://doi.org/10.1016/S0927-0256(01)00233-6

    Article  Google Scholar 

  11. G.E. Froudakis, Hydrogen interaction with single-walled carbon nanotubes: A combined quantum-mechanics/molecular-mechanics study. Nano Lett. 1(4), 179–182 (2001). https://doi.org/10.1021/nl015504p

    Article  ADS  Google Scholar 

  12. G. Gao, T. Cagin, W.A. Goddard III., Energetics, structure, mechanical and vibrational properties of single-walled carbon nanotubes. Nanotechnology 9(3), 184 (1998). https://doi.org/10.1088/0957-4484/9/3/007

    Article  ADS  Google Scholar 

  13. R. Khare, S.L. Mielke, J.T. Paci, S. Zhang, R. Ballarini, G.C. Schatz, T. Belytschko, Coupled quantum mechanical/molecular mechanical modeling of the fracture of defective carbon nanotubes and graphene sheets. Phys. Rev. B 75(7), 075412 (2007). https://doi.org/10.1103/PhysRevB.75.075412

    Article  ADS  Google Scholar 

  14. A. Shahabodini, Y. Gholami, R. Ansari, H. Rouhi, Vibration analysis of graphene sheets resting on Winkler/Pasternak foundation: a multiscale approach. Eur. Phys. J. Plus 134(10), 1–15 (2019). https://doi.org/10.1140/epjp/i2019-12856-x

    Article  MATH  Google Scholar 

  15. J.D. Correa, A.J. Da Silva, M. Pacheco, Tight-binding model for carbon nanotubes from ab initio calculations. J. Phys.: Condens. Matter 22(27), 275503 (2010). https://doi.org/10.1088/0953-8984/22/27/275503

    Article  Google Scholar 

  16. D. Sánchez-Portal, E. Artacho, J.M. Soler, A. Rubio, P. Ordejón, Ab initio structural, elastic, and vibrational properties of carbon nanotubes. Phys. Rev. B 59(19), 12678 (1999). https://doi.org/10.1103/PhysRevB.59.12678

    Article  ADS  Google Scholar 

  17. M.V. Veloso, A.G. Souza Filho, J. Mendes Filho, S.B. Fagan, R. Mota, Ab initio study of covalently functionalized carbon nanotubes. Chem. Phys. Lett. 430(1–3), 71–74 (2006). https://doi.org/10.1016/j.cplett.2006.08.082

    Article  ADS  Google Scholar 

  18. M. Arda, M. Aydogdu, Vibration analysis of carbon nanotube mass sensors considering both inertia and stiffness of the detected mass. Mech. Based Des. Struct. Mach. (2020). https://doi.org/10.1080/15397734.2020.1728548

    Article  Google Scholar 

  19. M.A. Eltaher, S. El-Borgi, J.N. Reddy, Nonlinear analysis of size-dependent and material-dependent nonlocal CNTs. Compos. Struct. 153, 902–913 (2016). https://doi.org/10.1016/j.compstruct.2016.07.013

    Article  Google Scholar 

  20. A.C. Eringen, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54(1983), 4703–4710 (1983). https://doi.org/10.1063/1.332803

    Article  ADS  Google Scholar 

  21. I. Esen, C. Özarpa, M.A. Eltaher, Free vibration of a cracked FG Microbeam embedded in an elastic matrix and exposed to magnetic field in a thermal environment. Compos. Struct. (2021). https://doi.org/10.1016/j.compstruct.2021.113552

    Article  Google Scholar 

  22. M.A. Maneshi, E. Ghavanloo, S.A. Fazelzadeh, Closed-form expression for geometrically nonlinear large deformation of nano-beams subjected to end force. Eur. Phys. J. Plus 133(7), 1–10 (2018). https://doi.org/10.1140/epjp/i2018-12084-0

    Article  Google Scholar 

  23. A. Norouzzadeh, R. Ansari, H. Rouhi, Isogeometric vibration analysis of small-scale Timoshenko beams based on the most comprehensive size-dependent theory. Scientia Iranica 25(3), 1864–1878 (2018). https://doi.org/10.24200/SCI.2018.5267.1177

    Article  Google Scholar 

  24. A. Norouzzadeh, M.F. Oskouie, R. Ansari, H. Rouhi, Integral and differential nonlocal micromorphic theory: Finite element bending analysis of Timoshenko micro-/nano-beams. Eng. Comput. (2019). https://doi.org/10.1108/EC-01-2019-0008

    Article  MATH  Google Scholar 

  25. Norouzzadeh, A., Oskouie, M. F., Ansari, R., & Rouhi, H. (2021). Isogeometric Analysis of Vibrations of Nanoscopic Beams on the Basis of Integral/Differential Nonlocal–Micropolar Models. Acta Mechanica Sinica, 1.

  26. Y.Q. Zhang, G.R. Liu, X.Y. Xie, Free transverse vibrations of double-walled carbon nanotubes using a theory of nonlocal elasticity. Phys. Rev. B 71(19), 195404 (2005). https://doi.org/10.1103/PhysRevB.71.195404

    Article  ADS  Google Scholar 

  27. M.A. Eltaher, M. Agwa, A. Kabeel, Vibration analysis of material size-dependent CNTs using energy equivalent model. Journal of Applied and Computational Mechanics 4(2), 75–86 (2018). https://doi.org/10.22055/JACM.2017.22579.1136

    Article  Google Scholar 

  28. L.L. Ke, Y.S. Wang, Flow-induced vibration and instability of embedded double-walled carbon nanotubes based on a modified couple stress theory. Phys. E. 43(5), 1031–1039 (2011). https://doi.org/10.1016/j.physe.2010.12.010

    Article  Google Scholar 

  29. M.A. Khorshidi, Validation of weakening effect in modified couple stress theory: Dispersion analysis of carbon nanotubes. Int. J. Mech. Sci. 170, 105358 (2020). https://doi.org/10.1016/j.ijmecsci.2019.105358

    Article  Google Scholar 

  30. H.M. Ma, X.L. Gao, J.N. Reddy, A microstructure-dependent Timoshenko beam model based on a modified couple stress theory. J. Mech. Phys. Solids 56(12), 3379–3391 (2008). https://doi.org/10.1016/j.jmps.2008.09.007

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. B. Akgöz, Ö. Civalek, Buckling analysis of cantilever carbon nanotubes using the strain gradient elasticity and modified couple stress theories. J. Comput. Theor. Nanosci. 8(9), 1821–1827 (2011). https://doi.org/10.1166/jctn.2011.1888

    Article  MATH  Google Scholar 

  32. L. Li, Y. Hu, L. Ling, Wave propagation in viscoelastic single-walled carbon nanotubes with surface effect under magnetic field based on nonlocal strain gradient theory. Phys. E. 75, 118–124 (2016). https://doi.org/10.1016/j.physe.2015.09.028

    Article  Google Scholar 

  33. C.W. Lim, G. Zhang, J.N. Reddy, A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. J. Mech. Phys. Solids 78, 298–313 (2015). https://doi.org/10.1016/j.jmps.2015.02.001

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. B. Safaei, N.A. Ahmed, A.M. Fattahi, Free vibration analysis of polyethylene/CNT plates. Eur. Phys. J. Plus 134(6), 271 (2019). https://doi.org/10.1140/epjp/i2019-12650-x

    Article  Google Scholar 

  35. F.A.C.M. Yang, A.C.M. Chong, D.C.C. Lam, P. Tong, Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39(10), 2731–2743 (2002). https://doi.org/10.1016/S0020-7683(02)00152-X

    Article  MATH  Google Scholar 

  36. A. Apuzzo, R. Barretta, S.A. Faghidian, R. Luciano, F.M. De Sciarra, Nonlocal strain gradient exact solutions for functionally graded inflected nano-beams. Compos. B Eng. 164, 667–674 (2019). https://doi.org/10.1016/j.compositesb.2018.12.112

    Article  Google Scholar 

  37. R. Barretta, M. Čanađija, F.M. de Sciarra, Nonlocal integral thermoelasticity: A thermodynamic framework for functionally graded beams. Compos. Struct. 225, 111104 (2019). https://doi.org/10.1016/j.compstruct.2019.111104

    Article  Google Scholar 

  38. R. Barretta, M. Čanađija, F.M. de Sciarra, On thermomechanics of multilayered beams. Int. J. Eng. Sci. 155, 103364 (2020). https://doi.org/10.1016/j.ijengsci.2020.103364

    Article  MathSciNet  MATH  Google Scholar 

  39. A.A. Daikh, A. Drai, M.S.A. Houari, M.A. Eltaher, Static analysis of multilayer nonlocal strain gradient nanobeam reinforced by carbon nanotubes. Steel Compos. Struct. 36(6), 643–656 (2020). https://doi.org/10.12989/scs.2020.36.6.643

    Article  Google Scholar 

  40. L. Li, Y. Hu, Wave propagation in fluid-conveying viscoelastic carbon nanotubes based on nonlocal strain gradient theory. Comput. Mater. Sci. 112, 282–288 (2016). https://doi.org/10.1016/j.commatsci.2015.10.044

    Article  Google Scholar 

  41. A. Norouzzadeh, R. Ansari, H. Rouhi, Nonlinear wave propagation analysis in Timoshenko nano-beams considering nonlocal and strain gradient effects. Meccanica 53(13), 3415–3435 (2018). https://doi.org/10.1007/s11012-018-0887-2

    Article  MathSciNet  Google Scholar 

  42. J. Zare, A. Shateri, Y.T. Beni, A. Ahmadi, Vibration analysis of shell-like curved carbon nanotubes using nonlocal strain gradient theory. Math. Methods Appl. Sci. (2020). https://doi.org/10.1002/mma.6599

    Article  Google Scholar 

  43. M.A. Agwa, M.A. Eltaher, Vibration of a carbyne nanomechanical mass sensor with surface effect. Appl. Phys. A 122(4), 335 (2016). https://doi.org/10.1007/s00339-016-9934-9

    Article  ADS  Google Scholar 

  44. M.E. Gurtin, A.I. Murdoch, A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57(4), 291–323 (1975)

    Article  MathSciNet  Google Scholar 

  45. S.K. Jena, S. Chakraverty, M. Malikan, F. Tornabene, Effects of surface energy and surface residual stresses on vibro-thermal analysis of chiral, zigzag, and armchair types of SWCNTs using refined beam theory. Mech. Based Des. Struct. Mach. (2020). https://doi.org/10.1080/15397734.2020.1754239

    Article  Google Scholar 

  46. X.W. Lei, T. Natsuki, J.X. Shi, Q.Q. Ni, Surface effects on the vibrational frequency of double-walled carbon nanotubes using the nonlocal Timoshenko beam model. Compos. B Eng. 43(1), 64–69 (2012). https://doi.org/10.1016/j.compositesb.2011.04.032

    Article  Google Scholar 

  47. A. Norouzzadeh, R. Ansari, Nonlinear dynamic behavior of small-scale shell-type structures considering surface stress effects: An isogeometric analysis. Int. J. Non-Linear Mech. 101, 174–186 (2018). https://doi.org/10.1016/j.ijnonlinmec.2018.01.008

    Article  ADS  Google Scholar 

  48. M. Pang, Y.Q. Zhang, W.Q. Chen, Transverse wave propagation in viscoelastic single-walled carbon nanotubes with small scale and surface effects. J. Appl. Phys. 117(2), 024305 (2015). https://doi.org/10.1063/1.4905852

    Article  ADS  Google Scholar 

  49. M.A. Eltaher, N. Mohamed, S. Mohamed, L.F. Seddek, Postbuckling of curved carbon nanotubes using energy equivalent model. J. Nano Res. 57, 136–157 (2019)

    Article  Google Scholar 

  50. M.A. Eltaher, T.A. Almalki, K.H. Almitani, K.I.E. Ahmed, Participation factor and vibration of carbon nanotube with vacancies. J. Nano Res. 57, 158–174 (2019)

    Article  Google Scholar 

  51. Z.X. Lei, K.M. Liew, Multiscale MDFEM for modeling mechanical behavior of carbon nanotubes. Appl. Math. Model. 69, 466–492 (2019). https://doi.org/10.1016/j.apm.2019.01.007

    Article  MathSciNet  Google Scholar 

  52. N. Mohamed, M.A. Eltaher, S.A. Mohamed, L.F. Seddek, Energy equivalent model in analysis of postbuckling of imperfect carbon nanotubes resting on nonlinear elastic foundation. Struct. Eng. Mech. 70(6), 737–750 (2019). https://doi.org/10.12989/sem.2019.70.6.737

    Article  Google Scholar 

  53. N. Mohamed, S.A. Mohamed, M.A. Eltaher, Buckling and post-buckling behaviors of higher order carbon nanotubes using energy-equivalent model. Eng. Comput. (2020). https://doi.org/10.1007/s00366-020-00976-2

    Article  Google Scholar 

  54. Y. Wu, X. Zhang, A.Y.T. Leung, W. Zhong, An energy-equivalent model on studying the mechanical properties of single-walled carbon nanotubes. Thin-walled Struct. 44(6), 667–676 (2006). https://doi.org/10.1016/j.tws.2006.05.003

    Article  Google Scholar 

  55. A.A. Abdelrahman, I. Esen, C. Özarpa, M.A. Eltaher, Dynamics of perforated nanobeams subject to moving mass using the nonlocal strain gradient theory. Appl. Math. Model. 96, 215–235 (2021). https://doi.org/10.1016/j.apm.2021.03.008

    Article  MathSciNet  Google Scholar 

  56. A.A. Abdelrahman, M.A. Eltaher, On bending and buckling responses of perforated nanobeams including surface energy for different beams theories. Engineering with Computers (2020). https://doi.org/10.1007/s00366-020-01211-8

    Article  Google Scholar 

  57. M. Aydogdu, U. Gul, Buckling analysis of double nanofibers embeded in an elastic medium using doublet mechanics theory. Compos. Struct. 202, 355–363 (2018). https://doi.org/10.1016/j.compstruct.2018.02.015

    Article  Google Scholar 

  58. Granik, V. T. (1978). Microstructural mechanics of granular media, Technique Report IM/MGU 78–241, Institute of Mechanics of Moscow State University.

  59. U. Gul, M. Aydogdu, Structural modelling of nanorods and nanobeams using doublet mechanics theory. Int. J. Mech. Mater. Des. 14(2), 195–212 (2018). https://doi.org/10.1007/s10999-017-9371-8

    Article  Google Scholar 

  60. A. Fatahi-Vajari, A. Imam, Torsional vibration of single-walled carbon nanotubes using doublet mechanics. Z. Angew. Math. Phys. 67(4), 81 (2016). https://doi.org/10.1007/s00033-016-0675-6

    Article  MathSciNet  MATH  Google Scholar 

  61. V.T. Granik, M. Ferrari, Microstructural mechanics of granular media. Mech. Mater. 15(4), 301–322 (1993). https://doi.org/10.1016/0167-6636(93)90005-C

    Article  Google Scholar 

  62. Ferrari, M., Granik, V. T., Imam, A., & Nadeau, J. C. (Eds.). (2008). Advances in doublet mechanics (Vol. 45). Springer Science & Business Media.

  63. M.H. Sadd, Q. Dai, A comparison of micro-mechanical modeling of asphalt materials using finite elements and doublet mechanics. Mech. Mater. 37(6), 641–662 (2005). https://doi.org/10.1016/j.mechmat.2004.06.004

    Article  Google Scholar 

  64. S.S. Lin, Y.C. Shen, Stress fields of a half-plane caused by moving loads-resolved using doublet mechanics. Soil Dyn. Earthq. Eng. 25(12), 893–904 (2005). https://doi.org/10.1016/j.soildyn.2005.08.001

    Article  Google Scholar 

  65. M. Kojic, I. Vlastelica, P. Decuzzi, V.T. Granik, M. Ferrari, A finite element formulation for the doublet mechanics modeling of microstructural materials. Comput. Methods Appl. Mech. Eng. 200(13–16), 1446–1454 (2011). https://doi.org/10.1016/j.cma.2011.01.001

    Article  ADS  MathSciNet  MATH  Google Scholar 

  66. A. Fatahi-Vajari, A. Imam, Axial vibration of single-walled carbon nanotubes using doublet mechanics. Indian J. Phys. 90(4), 447–455 (2016). https://doi.org/10.1007/s12648-015-0775-8

    Article  ADS  MATH  Google Scholar 

  67. U. Gul, M. Aydogdu, G. Gaygusuzoglu, Axial dynamics of a nanorod embedded in an elastic medium using doublet mechanics. Compos. Struct. 160, 1268–1278 (2017). https://doi.org/10.1016/j.compstruct.2016.11.023

    Article  Google Scholar 

  68. U. Gul, M. Aydogdu, Wave propagation in double walled carbon nanotubes by using doublet mechanics theory. Phys. E. 93, 345–357 (2017). https://doi.org/10.1016/j.physe.2017.07.003

    Article  Google Scholar 

  69. U. Gul, M. Aydogdu, Vibration analysis of Love nanorods using doublet mechanics theory. J. Braz. Soc. Mech. Sci. Eng. 41(8), 351 (2019). https://doi.org/10.1007/s40430-019-1849-x

    Article  Google Scholar 

  70. M.R. Ebrahimian, A. Imam, M. Najafi, The effect of chirality on the torsion of nanotubes embedded in an elastic medium using doublet mechanics. Indian J. Phys. 94(1), 31–45 (2020). https://doi.org/10.1007/s12648-019-01455-1

    Article  ADS  Google Scholar 

  71. U. Gul, M. Aydogdu, Vibration of layered nanobeams with periodic nanostructures. Mech. Based Des. Struct. Mach. (2020). https://doi.org/10.1080/15397734.2020.1848592

    Article  Google Scholar 

  72. M.Ö. Yayli, E. Asa, Longitudinal vibration of carbon nanotubes with elastically restrained ends using doublet mechanics. Microsyst. Technol. 26(2), 499–508 (2020). https://doi.org/10.1007/s00542-019-04512-1

    Article  Google Scholar 

  73. M.A. Eltaher, N. Mohamed, S.A. Mohamed, Nonlinear buckling and free vibration of curved CNTs by doublet mechanics. Smart Struct. Syst. 26(2), 213–226 (2020). https://doi.org/10.12989/sss.2020.26.2.213

    Article  MATH  Google Scholar 

  74. U. Gul, M. Aydogdu, A micro/nano-scale Timoshenko-Ehrenfest beam model for bending, buckling and vibration analyses based on doublet mechanics theory. Eur. J. Mech. A/Solids 86, 104199 (2021). https://doi.org/10.1016/j.euromechsol.2020.104199

    Article  ADS  MathSciNet  MATH  Google Scholar 

  75. M. Eglin, M.A. Eriksson, R.W. Carpick, Microparticle manipulation using inertial forces. Appl. Phys. Lett. 88(9), 091913 (2006). https://doi.org/10.1063/1.2172401

    Article  ADS  Google Scholar 

  76. M.A. Roudbari, T.D. Jorshari, A.G. Arani, C. Lü, T. Rabczuk, Transient responses of two mutually interacting single-walled boron nitride nanotubes induced by a moving nanoparticle. Eur. J. Mech. sA/Solids (2020). https://doi.org/10.1016/j.euromechsol.2020.103978

    Article  MATH  Google Scholar 

  77. M. Şimşek, Dynamic analysis of an embedded microbeam carrying a moving microparticle based on the modified couple stress theory. Int. J. Eng. Sci. 48(12), 1721–1732 (2010). https://doi.org/10.1016/j.ijengsci.2010.09.027

    Article  MATH  Google Scholar 

  78. M. Simsek, Forced vibration of an embedded single-walled carbon nanotube traversed by a moving load using nonlocal Timoshenko beam theory. Steel Compos. Struct. 11(1), 59–76 (2011). https://doi.org/10.12989/scs.2011.11.1.059

    Article  Google Scholar 

  79. M. Pourseifi, O. Rahmani, S.A.H. Hoseini, Active vibration control of nanotube structures under a moving nanoparticle based on the nonlocal continuum theories. Meccanica 50(5), 1351–1369 (2015). https://doi.org/10.1007/s11012-014-0096-6

    Article  MathSciNet  MATH  Google Scholar 

  80. Y. Kiani, Dynamics of FG-CNT reinforced composite cylindrical panel subjected to moving load. Thin-Walled Struct. 111, 48–57 (2017). https://doi.org/10.1016/j.tws.2016.11.011

    Article  Google Scholar 

  81. M. Ghadiri, A. Rajabpour, A. Akbarshahi, Non-linear forced vibration analysis of nanobeams subjected to moving concentrated load resting on a viscoelastic foundation considering thermal and surface effects. Appl. Math. Model. 50, 676–694 (2017). https://doi.org/10.1016/j.apm.2017.06.019

    Article  MathSciNet  MATH  Google Scholar 

  82. M.R. Barati, Dynamic response of porous functionally graded material nanobeams subjected to moving nanoparticle based on nonlocal strain gradient theory. Mater. Res. Exp. 4(11), 115017 (2017). https://doi.org/10.1088/2053-1591/aa9765

    Article  ADS  Google Scholar 

  83. M.R. Barati, N.M. Faleh, A.M. Zenkour, Dynamic response of nanobeams subjected to moving nanoparticles and hygro-thermal environments based on nonlocal strain gradient theory. Mech. Adv. Mater. Struct. 26(19), 1661–1669 (2019)

    Article  Google Scholar 

  84. I. Esen, Dynamic response of functional graded Timoshenko beams in a thermal environment subjected to an accelerating load. Eur. J. Mech. A/Solids 78, 103841 (2019). https://doi.org/10.1016/j.euromechsol.2019.103841

    Article  ADS  MathSciNet  MATH  Google Scholar 

  85. I. Esen, Dynamic response of a functionally graded Timoshenko beam on two-parameter elastic foundations due to a variable velocity moving mass. Int. J. Mech. Sci. 153, 21–35 (2019). https://doi.org/10.1016/j.ijmecsci.2019.01.033

    Article  Google Scholar 

  86. L. Jiang, Y. Zhang, Y. Feng, W. Zhou, Z. Tan, Dynamic response analysis of a simply supported double-beam system under successive moving loads. Appl. Sci. 9(10), 2162 (2019). https://doi.org/10.3390/app9102162

    Article  Google Scholar 

  87. C. Özarpa, I. Esen, Modelling the dynamics of a nanocapillary system with a moving mass using the non-local strain gradient theory. Math. Methods Appl. Sci. (2020). https://doi.org/10.1002/mma.6812

    Article  Google Scholar 

  88. I. Esen, Dynamics of size-dependant Timoshenko micro beams subjected to moving loads. Int. J. Mech. Sci. 175, 105501 (2020). https://doi.org/10.1016/j.ijmecsci.2020.105501

    Article  Google Scholar 

  89. S.H. Jazi, Nonlinear vibration of an elastically connected double Timoshenko nanobeam system carrying a moving particle based on modified couple stress theory. Arch. Appl. Mech. 90(12), 2739–2754 (2020). https://doi.org/10.1007/s00419-020-01746-8

    Article  Google Scholar 

  90. B.A. Hamidi, S.A. Hosseini, H. Hayati, Forced torsional vibration of nanobeam via nonlocal strain gradient theory and surface energy effects under moving harmonic torque. Wave. Rand. Compl. Media (2020). https://doi.org/10.1080/17455030.2020.1772523

    Article  Google Scholar 

  91. B.A. Hamidi, S.A. Hosseini, H. Hayati, R. Hassannejad, Forced axial vibration of micro and nanobeam under axial harmonic moving and constant distributed forces via nonlocal strain gradient theory. Mech. Based Des. Struct. Mach. (2020). https://doi.org/10.1080/15397734.2020.1744003

    Article  Google Scholar 

  92. M. Hashemian, M. Falsafioon, M. Pirmoradian, D. Toghraie, Nonlocal dynamic stability analysis of a Timoshenko nanobeam subjected to a sequence of moving nanoparticles considering surface effects. Mech. Mater. (2020). https://doi.org/10.1016/j.mechmat.2020.103452

    Article  Google Scholar 

  93. I. Esen, A.A. Abdelrahman, M.A. Eltaher, Dynamics analysis of timoshenko perforated microbeams under moving loads. Eng. Comput. (2020). https://doi.org/10.1007/s00366-020-01212-7

    Article  Google Scholar 

  94. Q. Zhang, H. Liu, On the dynamic response of porous functionally graded microbeam under moving load. Int. J. Eng. Sci. 153, 103317 (2020). https://doi.org/10.1016/j.ijengsci.2020.103317

    Article  MathSciNet  MATH  Google Scholar 

  95. A. Ebrahimi-Mamaghani, A. Forooghi, H. Sarparast, A. Alibeigloo, M.I. Friswell, Vibration of viscoelastic axially graded beams with simultaneous axial and spinning motions under an axial load. Appl. Math. Model. 90, 131–150 (2021). https://doi.org/10.1016/j.apm.2020.08.041

    Article  MathSciNet  Google Scholar 

  96. H. Liu, Q. Zhang, J. Ma, Thermo-mechanical dynamics of two-dimensional FG microbeam subjected to a moving harmonic load. Acta Astronaut. 178, 681–692 (2021)

    Article  ADS  Google Scholar 

  97. U. Gul, M. Aydogdu, Noncoaxial vibration and buckling analysis of embedded double-walled carbon nanotubes by using doublet mechanics. Compos. B Eng. 137, 60–73 (2018). https://doi.org/10.1016/j.compositesb.2017.11.005

    Article  Google Scholar 

  98. J.N. Reddy, Nonlocal theories for bending, buckling and vibration of beams. Int. J. Eng. Sci. 45(2–8), 288–307 (2007). https://doi.org/10.1016/j.ijengsci.2007.04.004

    Article  MATH  Google Scholar 

  99. P. Lou, G.L. Dai, Q.Y. Zeng, Dynamic analysis of a Timoshenko beam subjected to moving concentrated forces using the finite element method. Shock. Vib. 14(6), 459–468 (2007). https://doi.org/10.1243/09544062JMES119

    Article  Google Scholar 

  100. T. Kim, I. Park, U. Lee, Forced vibration of a Timoshenko beam subjected to stationary and moving loads using the modal analysis method. Shock. Vib. (2017). https://doi.org/10.1155/2017/3924921

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Eltaher.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eltaher, M.A., Abdelrahman, A.A. & Esen, I. Dynamic analysis of nanoscale Timoshenko CNTs based on doublet mechanics under moving load. Eur. Phys. J. Plus 136, 705 (2021). https://doi.org/10.1140/epjp/s13360-021-01682-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01682-8

Navigation