Skip to main content
Log in

Multiscale space-time dissipative structures in materials: Two-electron genesis of nonequilibrium electromechanical interfaces

  • Published:
Physical Mesomechanics Aims and scope Submit manuscript

Abstract

The fundamental supra-atomic scale of nanometer attosecond processes in condensed matter creates a multiscale hierarchy of electromechanical interfaces through two-electron dissipation of energy of quantum nanoelectromechanical systems. The space-time scales of electromechanical interfaces are specified, beginning with the subatomic scale of electron Compton length λe, by a sequence of degrees n = 1, 2, 3,... of the fine structure constant α -n. The third scale, with n = 3, corresponds to quantum mesoelectromechanical 2D interfaces which form functional matrices of electromechanical energy stores and converters as active nucleation centers of fractal topological defects in adjacent crystal structure regions. The hierarchy of electromechanical interfaces creates a hierarchy of dissipative structures in mesomechanics of solids and biomimetics of soft materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Panin, V.E., Egorushkin, V.E., and Panin, A.V., Role of Local Nanostructural States in Plastic Deformation and Fracture of Solids, Phys. Mesomech., 2012, vol. 15, no. 1-2, pp. 1–12.

    Article  Google Scholar 

  2. Panin, V.E., Physical Mesomechanics of Materials, Tomsk: TSU, 2015, vol.2.

  3. Panin, V.E., Egorushkin, V.E., Panin, A.V., and Chernyavskii, A.G., Plastic Distortion as a Fundamental Mechanism in the Nonlinear Mesomechanics of Plastic Deformation and Fracture of Solids, Phys. Mesomech., 2016, vol. 19, no. 3, pp. 255–268.

    Article  Google Scholar 

  4. Umezawa, H., Matsumoto, H., and Tachiki, M., Thermo Field Dynamics and Condensed States, North-Holland Pub. Co., 1982.

    Google Scholar 

  5. Beznosjuk, S.A., Minaev, B.F., Dajanov, R.D., and Muldachmetov, Z.M., Approximating Quasiparticle Density Functional Calculations of Small Active Clusters: Strong Electron Correlation Effects, Int. J. Quant. Chem., 1990, vol. 38, pp. 779–797.

    Article  Google Scholar 

  6. Beznosyuk, S.A., Minaev, B.F., and Muldachmetov, Z.M., Informative Energetic Structure and Electronic Multistability of Condensed State, J. Mol. Struct.-Theochem., 1991, vol. 227, pp. 125–129.

    Article  Google Scholar 

  7. Beznosyuk, S.A., Potekaev, A.I., Zhukovsky, M.S., Zhukovsky, T.M., and Fomina, L.V., Multiscale Structure, Physical-Chemical and Informative Properties of Matter, Tomsk: NTL, 2005.

    Google Scholar 

  8. Zhukovsky, M.S., Beznosyuk S.A., Potekaev, A.I., and Starostenkov, M.D., Fundamentals of Computer-Aided Nanoengineering of Biomimetic Nanosystems, Tomsk: NTL, 2011.

    Google Scholar 

  9. Blencowe, M., Quantum Electromechanical Systems, Phys. Rep., 2004, vol. 395, pp. 159–222.

    Article  ADS  Google Scholar 

  10. Pisharody, S.N. and Jones, R.R., Probing Two-Electron Dynamics of an Atom, Science, 2004, vol. 303, pp. 813–815.

    Article  ADS  Google Scholar 

  11. Morishita, T., Watanabe, S., and Lin, C.D., Attosecond Light Pulses for Probing Two-Electron Dynamics of Helium in the Time Domain, Phys. Rev. Lett., 2007, vol. 98, p. 083003.

    Article  ADS  Google Scholar 

  12. Ott, C., Kaldun, A., Argenti, L., Raith, P., Mayer, K., Laux, M., Reconstruction and Control of a Time-Dependent Two-Electron Wave Packet, Nature, 2014, vol. 516, pp. 374–378.

    Article  ADS  Google Scholar 

  13. Ranitovic, P., Hogle, C.W., Riviere, P., Palacios, A., Tong, X.M., Toshima, N., Attosecond VUV Coherent Control of Molecular Dynamics, Proc. Nat. Acad. Sci., 2014, vol. 111, pp. 912–917.

    Article  ADS  Google Scholar 

  14. Levesque, J. and Corkum, P.B., Attosecond Science and Technology, Can. J. Phys., 2006, vol. 84, pp. 1–18.

    Article  ADS  Google Scholar 

  15. Corkum, P.B. and Krausz, F., Attosecond Science, Nat. Phys., 2007, vol. 3, pp. 381–387.

    Article  Google Scholar 

  16. Krausz, F. and Ivanov, M., Attosecond Physics, Rev. Mod. Phys., 2009, vol. 81, pp. 163–234.

    Article  ADS  Google Scholar 

  17. Gallmann, L., Cirelli, C., and Keller, U., Attosecond Science: Recent Highlights and Future Trends, Ann. Rev. Phys. Chem., 2012, vol. 63, pp. 447–469.

    Article  ADS  Google Scholar 

  18. Beznosyuk, S.A., Zhukovskii, M.S., and Potekaev, A.I., The Theory of Motion of Quantum Electromechanical Plasmoid Nanobots in a Condensed-State Medium, Russ. Phys. J., 2013, vol. 56, no. 5, pp. 546–556.

    Article  MATH  Google Scholar 

  19. Beznosyuk, S.A., Zhukovsky, M.S., and Zhukovsky, T.M., Theory and Computer Simulation of Quantum NEMS Energy Storage in Materials, Int. J. Nanosci., 2015, vol. 14, no. 1-2, p. 1460023. doi 10.1142/S0219581X14600230

    Article  Google Scholar 

  20. Beznosyuk, S.A., Zhukovsky, M.S., and Maslova, O.A., Attosecond Nanotechnology: NEMS of Energy Storage and Nanostructural Transformations in Materials, AIP Conf Proc., 2015, vol. 1683, pp. 020024–1-020024-2.

    Article  Google Scholar 

  21. Beznosyuk, S.A., Maslova, O.A., and Zhukovsky, M.S., Convertible Hydrogen Biradicals Storage by Graphene Nanosheets, Int. J. Hydrogen Energ., 2016, vol. 41, pp. 7590–7599. doi 10.1016/j.ijhydene.2016.01.175

    Article  Google Scholar 

  22. Bader, R.F.W., Nguyen-Dang, T.T., and Tal, Y., Quantum Topology of Molecular Charge Distributions. II. Molecular Structure and Its Change, J. Chem. Phys., 1979, vol. 70, no. 9, pp. 4316–4330.

    Article  ADS  MathSciNet  Google Scholar 

  23. Bader, R.F.W., Atoms in Molecules. A Quantum Theory, New York: Oxford University Press, 1990.

    Google Scholar 

  24. Beznosyuk, S.A., The Concept of Atoms in the Density Functional Theory and Dynamics of an Effective Bose-Condensate, Zh. Struct. Khim., 1983, vol. 24, no. 3, pp. 10–12.

    Google Scholar 

  25. Muldachmetov, Z.M., Minaev, B.F., and Beznosyuk, S.A., The Theory of Electronic Structure of Molecules. Modern Aspects, Alma-Ata: Nauka, 1988.

    Google Scholar 

  26. Zewail, A.H., Femtochemistry. Atomic-Scale Dynamics of the Chemical Bond Using Ultrafast Lasers, Nobel Lectures in Chemistry (1996-2000), Grenthe, I., Ed., Singapore: World Scientific Publishing Co., 2003.

    Google Scholar 

  27. Rochlin, M.W., Dailey, M.E., and Bridgman, P.C., Polymerizing Microtubules Activate Site-Directed F-Actin Assembly in Nerve Growth Cones, Molec. Biol. Cell., 1999, vol. 10, pp. 2309–2327. doi 10.1091/mbc.10.7.2309

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Beznosyuk.

Additional information

Original Russian Text © S.A. Beznosyuk, M.S. Zhukovsky, 2017, published in Fizicheskaya Mezomekhanika, 2017, Vol. 20, No. 1, pp. 106-115.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beznosyuk, S.A., Zhukovsky, M.S. Multiscale space-time dissipative structures in materials: Two-electron genesis of nonequilibrium electromechanical interfaces. Phys Mesomech 20, 102–110 (2017). https://doi.org/10.1134/S102995991701009X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102995991701009X

Keywords

Navigation