Skip to main content
Log in

Plastic distortion as a fundamental mechanism in nonlinear mesomechanics of plastic deformation and fracture

  • Published:
Physical Mesomechanics Aims and scope Submit manuscript

Abstract

Any deformed solid represents two self-consistent functional subsystems: a 3D crystal subsystem and a 2D planar subsystem (surface layers and all internal interfaces). In the planar subsystem, which lacks thermodynamic equilibrium and translation invariance, a primary plastic flow develops as nonlinear waves of structural transformations. At the nanoscale, such planar nonlinear transformations create lattice curvature in the 3D subsystem, resulting in bifurcational interstitial states there. The bifurcational states give rise to a fundamentally new mechanism of plastic deformation and fracture—plastic distortion—which is allowed for neither in continuum mechanics nor in fracture mechanics. The paper substantiates that plastic distortion plays a leading role in dislocation generation and glide, plasticity and superplasticity, plastic strain localization and fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Panin, V.E., Egorushkin, V.E., and Panin, A.V., Nonlinear Wave Processes in a Deformable Solid Treated as a Hierarchically Organized System, Phys. Usp., 2012, vol. 55(12), pp. 1351–1357.

    Article  Google Scholar 

  2. Egorushkin, V.E., The Gauge Dynamic Theory of Defects in Structured Media under Inhomogeneous Deformation, Izv. Vyssh. Uchebn. Zaved. Fiz., 1990, vol. 33, no. 2, pp. 51–68.

    MathSciNet  Google Scholar 

  3. Panin, V.E. and Egorushkin, V.E., Fundamental Role of Local Curvature of Crystal Structure in Plastic Deformation and Fracture of Solids, Physical Mesomechanics of Multilevel Systems 2014: AIP Conf Proc., Panin, V.E., Psakhie, S.G., and Fomin, V.M., Eds., Melville, NY: American Institute of Physics, 2014, vol. 1623, pp. 475–478.

    Google Scholar 

  4. Panin, V.E. and Egorushkin, V.E., Curvature Solitons as Generalized Wave Structural Carriers of Plastic Deformation and Fracture, Phys. Mesomech., 2013, vol. 16, no. 4, pp. 267–286.

    Article  Google Scholar 

  5. Panin, V.E., Elsukova, T.F., Surikova, N.S., Popkova, Yu.F., Derevyagina, L.S., and Panin, A.V., Multiscale Translation-Rotation Sliding and Shear Banding in Al Polycrystals under Inhomogeneous Plastic Deformation, Mechanics of Materials, Springer, 2016 (in print).

    Google Scholar 

  6. Landau, L.D. and Lifshitz, E.M., Theory of Elasticity, Oxford-New York: Pergamon Press, 1986.

    MATH  Google Scholar 

  7. Rybin, V.V., High Plastic Strains and Fracture of Metals, Moscow: Metallurgiya, 1986

    Google Scholar 

  8. Derevyagina, L.S., Panin, V.E. and Gordienko, A.I., SelfOrganization of Plastic Shears in Localized Deformation Macrobands in the Neck of High-Strength Polycrystals, Its Role in Material Fracture under Uniaxial Tension, Phys. Mesomech., 2008, vol. 11, no. 1-2, pp. 51-62.

    Article  Google Scholar 

  9. Panin, V.E., Balokhonov, R.R., Derevyagina, L.S., and Romanova, V.A., The Effect of Plastic Flow in the Neck on the Scale Levels of Fracture in Polycrystals. Experiment and Modeling, Phys. Mesomech., 2011, vol. 14, no. 1–2, pp. 16–23.

    Article  Google Scholar 

  10. Panin, V.E., Grinyaev, Yu.V., and Panin, A.V., Field Theory of Multilevel Plastic Flow in the Neck of a Deformed Solid, Phys. Mesomech., 2007, vol. 10, no. 5–6, pp. 225–234.

    Article  Google Scholar 

  11. Egorushkin, V.E., Panin, V.E., and Panin, A.V., Wave Theory and Multiscale Superplasticity Criterion, FTT, 2016 (in print).

    Google Scholar 

  12. Myasnikov, V.P. and Guzev, M.A., Geometrical Model of the Defect Structure of an Elastoplastic Continuous Medium, J. Appl. Mech. Techn. Phys., 1999, vol. 40, no. 4, p. 331.

    Article  ADS  MathSciNet  Google Scholar 

  13. Guzev, M.A., Structure of Stress and Displacement Fields in Non-Euclidean Model of Continuum Medium, Vesnt. NNGU. Mech. Solids, 2011, no. 4, pp. 1461–1462.

    Google Scholar 

  14. Egorushkin, V.E. and Panin, V.E., Physical Foundations of Nonlinear Fracture Mechanics, Mech. Solids, 2013, vol. 48(5), pp. 525–536.

    Article  Google Scholar 

  15. Panin, V.E. and Egorushkin, V.E., Basic Physical Mesomechanics of Plastic Deformation and Fracture of Solids as Hierarchically Organized Nonlinear Systems, Phys. Mesomech., 2015, vol. 18, no. 4, pp. 377–390.

    Article  Google Scholar 

  16. V.E. Panin, V.E. Egorushkin, and T.F. Elsukova, Physical mesomechanics of grain boundary sliding in a deformable polycrystal, Phys. Mesomech., 2013, vol. 16, no. 1, pp. 1–8.

    Article  Google Scholar 

  17. M.A. Guzev and A.A. Dmitriev, Bifurcational Behavior of Potential Energy in a Particle System, Phys. Mesomech., 2013, vol. 16, no. 4, pp. 287–293.

    Article  Google Scholar 

  18. Zhukovsky, M.S., Vazhenin, S.V., Maslova, O.A., and Beznosyk, S.A., Theory and Computer Simulation of Non-Equilibrium Quantum Electromechanical Processes of a Material Nanostructuring, Barnaul: Alt. State Univ., 2013.

    Google Scholar 

  19. Zavalishin, V.A., Deryagin, A.I., and Sagaradze, V.V., Redistribution of Alloying Elements and Variation of the Magnetic Properties Induced by Cold Strain in Stable Austenitic Chromium-Nickel Steels: I. Experimental Observation of the Effect, Phys. Met. Metallogr., 1993, vol. 75, pp. 173–179.

    Google Scholar 

  20. Sagaradze, V.V., Diffusion Transformations in Steels due to Cold Deformation, Metal Sci. Heat Treat., 2008, vol. 50, pp. 422–429.

    Article  Google Scholar 

  21. Gumerov, A.G., Zaynullin, R.S., Yamaleev, K.M., and Roslyakov, A.V., Ageing of Oil Line Pipes, Moscow: Nedra, 1995.

    Google Scholar 

  22. Bolshakov, A.M., Golikov, N.I., Syromyatnikova, A.S., Alekseev, A.A., and Tikhonov, R.P., Fracture and Damage of Gas and Oil Industry Costructions at Long-Term Performance, Gaz. Promyshlennost, 2007, no. 7, pp. 89–91.

    Google Scholar 

  23. Safarov, I.M., Korznikov, A.V., Sergeev, S.N., Gladkovskii, S.V., and Borodin, E.M., Effect of Submicrocrystalline State on Strength and Impact Toughness of Low-Carbon 12GBA Steel, Phys. Met. Metallogr., 2012, vol. 113, pp. 1001–1006.

    Article  ADS  Google Scholar 

  24. Syromyatnikova, A.S., Degradation of Physical and Mechanical Condition of the Main Gas Pipeline Metal at Long Operation in the Conditions of the Cryolitozone, Fiz. Mezomekh., 2014, vol. 17, no. 2, pp. 85–91.

    Google Scholar 

  25. Panin, V.E., Derevyagina, L.S., Lebedev, M.P., Syromyatnikova, A.S., Surikova, N.S., Pochivalov, Yu.I., and Ovechkin, B.B., Scientific Basis for Cold Shortness of Structural BCC Steels and Their Structural Degradation at Below Zero Temperatures, Fiz. Mezomekh., 2016, vol. 19, no. 2, pp. 5–14.

    Google Scholar 

  26. Bolshakov, A.M., Analysis of Fracture and Defects in Gas Main Pipelines and Vessels in the Conditions of the North, Gaz. Promyshlennost, 2010, no. 5, pp. 52–53.

    Google Scholar 

  27. Tyumentsev, A.N., Ditenberg, I.A., Korotaev, A.D., and Denisov, K.I., Lattice Curvature Evolution in Metal Materials on Meso- and Nanostructural Scales of Plastic Deformation, Phys. Mesomech., 2013, vol. 16, no. 4, pp. 319–334.

    Article  Google Scholar 

  28. Straumall, B.B., Mazilkin, A.A., Baretzky, B., Schutz, G., Rabkin, E., and Valiev, R.Z., Accelerated Diffusion and Phase Transformations in Co-Cu Alloys Driven by the Severe Plastic Deformation, Mater. Trans., 2012, vol. 53, pp. 63–71.

    Article  Google Scholar 

  29. Grigorieva, T.F., Barinova, A.P., and Lyakhov, N.Z., Mechanochemical Synthesis of Metal Systems, Novosibirsk: Parallel, 2008.

    Google Scholar 

  30. Lyakhov, N.Z., Talako, T.L., and Grigorieva, T.F., Effect of Mechanical Activation on the Processes of Phase- and Structure Formation during Self-Propagating High-Temperature Synthesis, Novosibirsk: Parallel, 2008.

    Google Scholar 

  31. Maslov, V.P., Undistinguishing Statistics of Objectively Distinguishable Objects. Thermodynamics and Super Fluidity of Classical Gas, Math. Notes, 2013, vol. 94, no. 5, pp. 722–813.

    Article  MathSciNet  MATH  Google Scholar 

  32. Yoshida, S., Interpretation of Mesomechanical Behaviors of Plastic Deformation Based on Analogy to Maxwell Electromagnetic Theory, Phys. Mesomech., 2001, vol. 4, no. 3, pp. 29–34.

    Google Scholar 

  33. Yoshida, S., Dynamics of Plastic Deformation Based on Restoring and Energy Dissipative Mechanisms in Plasticity, Phys. Mesomech., 2008, vol. 11, no. 3–4, pp. 137–143.

    Article  Google Scholar 

  34. Cherepanov, G.P., Fracture Mechanics, Moscow-Izhevsk: IKI, 2012.

    MATH  Google Scholar 

  35. Panin, V.E., Egorushkin, V.E., Derevyagina, L.S., and Deryugin, E.E., Nonlinear Wave Processes of Crack Propagation in Brittle and Brittle-Ductile Fracture, Phys. Mesomech., 2013, vol. 16, no. 3, pp. 183–190.

    Article  Google Scholar 

  36. Deryugin, Ye.Ye., Panin, V.E., and Suvorov, B.I., Determination of Fracture Toughness for Small-Sized Specimens with Ultrafine Grain Structure, Physical Mesomechanics of Multilevel Systems 2014: AIP Conf Proc., Panin, V.E., Psakhie, S.G., and Fomin, V.M., Eds., Melville, NY: American Institute of Physics, 2014, vol. 1623, pp. 111–114.

    Google Scholar 

  37. Panin, V.E., Fracture Mechanisms of a Solid as a Nonlinear Hierarchically Organized System, Proc. Eur Conf. Fracture 19, Kazan, Russia, 2012, Kazan: Kazan Sci. Center RAS, 2012.

    Google Scholar 

  38. Kveglis, L.I., Noskov, F.M., Kalitova, A.A., and Abylkalykova, R.B., Abnormaly Fast Migration of Substance at Shock Loadings, Adv. Mater. Res., 2014, vol. 871, pp. 231–234.

    Google Scholar 

  39. Mukhamedov, A.M., Deindividuation Phenomenon: Links between Mesodynamics and Macroscopic Phenomenology of Turbulence, Phys. Mesomech., 2015, vol. 18, no. 1, pp. 24–32.

    Article  Google Scholar 

  40. Petrov, V.A., Strokatov, R.D., and Sukhovarov, V.F., Mechanical Properties of a Cr-Ni-Al Alloy with a Microduplex Structure, FMM, 1985, vol. 591, no. 1, pp. 202–205.

    Google Scholar 

  41. Strokatov, R.D., Galchenko, N.K., and Akhromovich, N.K., Superplasticity of High-Nitrogene Cr-Mn Steels, Proc I All-Union Conf. on High-Nitrogene Steels, Kiev, 1990, pp. 25–26.

    Google Scholar 

  42. Kaibyshev, O.A. and Faizova, N.M., Diffusion in Superplasticity, Dokl. RAN, 1998, vol. 361, no. 4, pp. 495–497.

    Google Scholar 

  43. Potashinskii, A.Z. and Pokrovskii, A.L., Fluctuation Theory of Phase Transitions, Oxford: Pergamon, 1984.

    Google Scholar 

  44. Lebedev, V.V., Fluctuation Effects in Macrophysics, MFTI Lecture Course, Moscow: ITP RAS, 2009.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. E. Panin.

Additional information

Original Russian Text © V.E. Panin, V.E. Egorushkin, A.V. Panin, A.G. Chernyavskii, 2016, published in Fizicheskaya Mezomekhanika, 2016, Vol. 19, No. 1, pp. 31-46.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panin, V.E., Egorushkin, V.E., Panin, A.V. et al. Plastic distortion as a fundamental mechanism in nonlinear mesomechanics of plastic deformation and fracture. Phys Mesomech 19, 255–268 (2016). https://doi.org/10.1134/S1029959916030048

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1029959916030048

Keywords

Navigation