Skip to main content
Log in

Noble Metal Porphyrin Complexes. Intermediates of Catalytic Processes (A Review)

  • COORDINATION COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

A wide variety of oxidation states and coordination numbers of complexing cations, various redox properties, high stability of the coordination center, as well as a unique electronic structure determine the catalytic activity of porphyrin complexes of noble metals in various reactions with organic substrates. This review presents the types of catalytic reactions involving compounds of ruthenium, rhodium, iridium, palladium, platinum, and gold with porphyrins, with an emphasis on the features of intermediates depending on the nature of the metal, electronic and steric effects of peripheral substituents of the macrocycle. The presented data provide a theoretical basis that can contribute to the development of innovative materials for catalysis based on metalloporphyrins, as well as the creation of new homogeneous and heterogeneous catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

REFERENCES

  1. V. M. Gryaznov and N. V. Orekhova, Catalysis with Noble Metals. Dynamic Features (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

  2. M. A. Kinzhalov and K. V. Luzyanin, Russ. J. Inorg. Chem. 67, 48 (2022). https://doi.org/10.1134/S0036023622010065

    Article  CAS  Google Scholar 

  3. I. V. Fedoseev, V. V. Vasekin, and A. V. Shevelkov, Russ. J. Inorg. Chem. 66, 1275 (2021). https://doi.org/10.1134/S0036023621090023

    Article  CAS  Google Scholar 

  4. V. I. Bukhtiyarov and M. G. Slin’ko, Russ. Chem. Rev. 70, 147 (2001). https://doi.org/10.1070/RC2001v070n02ABEH000637

    Article  CAS  Google Scholar 

  5. O. G. Ellert, M. V. Tsodikov, S. A. Nikolaev, et al., Russ. Chem. Rev. 83, 718 (2014). https://doi.org/10.1070/RC2014v083n08ABEH004432

    Article  CAS  Google Scholar 

  6. Y. V. Larichev, Kinet. Catal. 62, 528 (2021). https://doi.org/10.31857/S0453881121040079

    Article  CAS  Google Scholar 

  7. G. I. Dzhardimalieva, A. K. Zharmagambetova, S. E. Kudaibergenov, et al., Kinet. Catal. 61, 198 (2020). https://doi.org/10.31857/S0453881120020045

    Article  CAS  Google Scholar 

  8. Z. Song, X. Li, and F. Liang, Chem. Commun. 58, 9646 (2022). https://doi.org/10.1039/D2CC03083G

    Article  CAS  Google Scholar 

  9. N. Narayan, A. Meiyazhagan, and R. Vajtai, Materials 12, 3602 (2019). https://doi.org/10.3390/ma12213602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. N. S. Porter, H. Wu, Z. Quan, et al., Acc. Chem. Res. 46, 1867 (2013). https://doi.org/10.1021/ar3002238

    Article  CAS  PubMed  Google Scholar 

  11. Y. Hu, H. Zhang, P. Wu, et al., Phys. Chem. Chem. Phys. 13, 4083 (2011). https://doi.org/10.1039/c0cp01998d

    Article  CAS  PubMed  Google Scholar 

  12. F. Taufany, C. J. Pan, H. L. Chou, et al., Chemistry 17, 10724 (2011). https://doi.org/10.1002/chem.201100556

    Article  CAS  PubMed  Google Scholar 

  13. H. Zhang, M. Jin, Y. Xiong, et al., Acc. Chem. Res. 46, 1783 (2013). https://doi.org/10.1021/ar300209w

    Article  CAS  PubMed  Google Scholar 

  14. I. K. Goncharova, R. A. Novikov, I. P. Beletskaya, et al., J. Catal. 418, 70 (2023). https://doi.org/10.1016/j.jcat.2023.01.004

    Article  CAS  Google Scholar 

  15. H. Li, J. J. M. Vequizo, T. Hisatomi, et al., EES Catal. 1, 26 (2023). https://doi.org/10.1039/D2EY00031H

    Article  CAS  Google Scholar 

  16. L. Su, W. Jia, C. M. Li, et al., ChemSusChem 7, 361 (2014). https://doi.org/10.1002/cssc.201300823

    Article  CAS  PubMed  Google Scholar 

  17. X. Zhang, H. Li, J. Yang, et al., RSC Adv. 11, 13316 (2021). https://doi.org/10.1039/d0ra05468b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. R. Horn, K. Williams, N. Degenstein, et al., J. Catal. 249, 380 (2007). https://doi.org/10.1016/j.jcat.2007.05.01

    Article  CAS  Google Scholar 

  19. S. Zhang, J. Geng, Z. Zhao, et al., EES Catal. 1, 45 (2023). https://doi.org/10.1039/D2EY00038E

    Article  CAS  Google Scholar 

  20. V. V. Chesnokov, A. S. Chichkan, and Z. R. Ismagilov, Kinet. Catal. 58, 649 (2017). https://doi.org/10.7868/S0453881117050021

    Article  CAS  Google Scholar 

  21. D. V. Glyzdova, N. S. Smirnova, D. A. Shlyapin, et al., Kinet. Catal. 58, 140 (2017). https://doi.org/10.7868/S0453881117020058

    Article  CAS  Google Scholar 

  22. P. P. Fedorov, E. V. Chernova, and Y. V. Shubin, Russ. J. Inorg. Chem. 66, 891 (2021). https://doi.org/10.1134/S0036023621050053

    Article  CAS  Google Scholar 

  23. S. S. Shapovalov, A. S. Popova, and Y. V. Ioni, Russ. J. Inorg. Chem. 66, 1621 (2021). https://doi.org/10.1134/S0036023621110140

    Article  CAS  Google Scholar 

  24. N. A. Bumagin, Russ. J. Gen. Chem. 92, 832 (2022). https://doi.org/10.1134/S1070363222050127

    Article  CAS  Google Scholar 

  25. N. A. Bumagin, Russ. J. Gen. Chem. 92, 63 (2022). https://doi.org/10.1134/S1070363222010091

    Article  CAS  Google Scholar 

  26. K. N. Gavrilov, I. V. Chuchelkin, V. M. Trunina, et al., Russ. J. Gen. Chem. 92, 2612 (2022). https://doi.org/10.1134/S1070363222120088

    Article  CAS  Google Scholar 

  27. A. Kurimoto, S. A. Nasseri, C. Yunt, et al., Nat. Commun. 14, 1814 (2023). https://doi.org/10.1038/s41467-023-37257-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. S. A. Chala, M.-C. Tsai, W.-N. Su, et al., ACS Nano 14, 1770 (2020). https://doi.org/10.1021/acsnano.9b07487

    Article  CAS  PubMed  Google Scholar 

  29. V. Y. Tkachenko, V. V. Dobrygin, Z. M. Dzhabieva, et al., Russ. J. Inorg. Chem. 66, 354 (2021). https://doi.org/10.1134/S0036023621030189

    Article  CAS  Google Scholar 

  30. K. O. Biriukov, O. I. Afanasyev, M. I. Godovikova, et al., Russ. Chem. Rev. 91, RCR5045 (2022). https://doi.org/10.1070/RCR5045

    Article  Google Scholar 

  31. E. I. Isaeva, N. V. Gur’ev, T. B. Boitsova, et al., Russ. J. Gen. Chem. 92, 1972 (2022). https://doi.org/10.1134/S1070363222100115

    Article  CAS  Google Scholar 

  32. G. Giannakakis, M. Flytzani-Stephanopoulos, and E. C. H. Sykes, Acc. Chem. Res. 52, 237 (2019). https://doi.org/10.1016/j.jcat.2007.05.011

    Article  CAS  PubMed  Google Scholar 

  33. M. T. Darby, M. Stamatakis, A. Michaelides, et al., J. Phys. Chem. Lett. 9, 5636 (2018). https://doi.org/10.1021/acs.accounts.8b00490

    Article  CAS  PubMed  Google Scholar 

  34. R. T. Hannagan, G. Giannakakis, M. Flytzani-Stephanopoulos, et al., Chem. Rev. 120, 12044 (2020). https://doi.org/10.1021/10.1021/acs.chemrev.0c00078

    Article  CAS  PubMed  Google Scholar 

  35. J. Han, J. Lu, M. Wang, et al., Chin. J. Chem. 37, 977 (2019). https://doi.org/10.1002/cjoc.201900185

    Article  CAS  Google Scholar 

  36. S. K. Kaiser, Z. Chen, D. F. Akl, et al., Chem. Rev. 120, 11703 (2020). https://doi.org/10.1021/acs.chemrev.0c00576

    Article  CAS  PubMed  Google Scholar 

  37. L. Zhou, J. M. P. Martirez, J. Finzel, et al., Nat. Energy 5, 6170 (2020). https://doi.org/10.1038/s41560-019-0517-9

    Article  CAS  Google Scholar 

  38. R. Lang, X. Du, Y. Huang, et al., Chem. Rev. 120, 11986 (2020). https://doi.org/10.1021/acs.chemrev.0c00797

    Article  CAS  PubMed  Google Scholar 

  39. Z.-K. Han, D. Sarker, R. Ouyang, et al., Nature Commun. 12, 1833 (2021). https://doi.org/10.1038/s41467-021-22048-9

    Article  CAS  Google Scholar 

  40. S. Ji, Y. Chen, X. Wang, et al., Chem. Rev. 120, 11900 (2020). https://doi.org/10.1021/acs.chemrev.9b00818

    Article  CAS  PubMed  Google Scholar 

  41. M. Babucci, A. Guntida, and B. C. Gates, Chem. Rev. 120, 11956 (2020). https://doi.org/10.1021/acs.chemrev.0c00864

    Article  CAS  PubMed  Google Scholar 

  42. Y.-S. Wei, M. Zhang, R. Zou, et al., Chem. Rev. 120, 12089 (2020). https://doi.org/10.1021/acs.chemrev.9b00757

    Article  CAS  PubMed  Google Scholar 

  43. X. Yu, J. Deng, Y. Liu, et al., Catalysts 12, 1239 (2022). https://doi.org/10.3390/catal12101239

    Article  CAS  Google Scholar 

  44. T. He, S. Chen, B. Ni, et al., Angew. Chem., Int. Ed. Engl. 57, 3493 (2018). https://doi.org/10.1002/anie.201800817

    Article  CAS  PubMed  Google Scholar 

  45. X. Li, X. Yang, Y. Huang, et al., Adv. Mater. 1902031 (2019). https://doi.org/10.1002/adma.201902031

  46. J. Zhang, Y. Gu, Y. Lu, et al., Appl. Catal., B 325, 122316 (2023). https://doi.org/10.1016/j.apcatb.2022.122316

    Article  CAS  Google Scholar 

  47. L. Zhang, L. Xue, B. Lin, et al., ChemSusChem 15, e202102494. (2022). https://doi.org/10.1002/cssc.202102494

  48. C. Gao, J. Low, R. Long, et al., Chem. Rev. 120, 12175 (2020). https://doi.org/10.1021/acs.chemrev.9b00840

    Article  CAS  PubMed  Google Scholar 

  49. Z. Li, B. Li, Y. Hu, et al., Mater. Adv. 3, 779 (2022). https://doi.org/10.1039/d1ma00858g

    Article  CAS  Google Scholar 

  50. Y. Wang, H. Su, Y. He, et al., Chem. Rev. 120, 12217 (2020). https://doi.org/10.1021/acs.chemrev.0c00594

    Article  CAS  PubMed  Google Scholar 

  51. F. Zhang, Y. Zhu, Q. Lin, et al., Energy Environ. Sci. 14, 2954 (2021). https://doi.org/10.1039/d1ee00247c

    Article  CAS  Google Scholar 

  52. J. H. Kim, D. Shin, J. Lee, et al., ACS Nano 14, 1990 (2020). https://doi.org/10.1021/acsnano.9b08494

    Article  CAS  PubMed  Google Scholar 

  53. H. Yang, R. Shi, L. Shang, et al., Small Struct. 2, 2100007 (2021). https://doi.org/10.1002/sstr.202100007

    Article  CAS  Google Scholar 

  54. P. Knecht, P. T. P. Ryan, D. A. Duncan, et al., J. Phys. Chem. C 125, 3215 (2021). https://doi.org/10.1021/acs.jpcc.0c10418

    Article  CAS  Google Scholar 

  55. C.-X. Huang, S.-Y. Lv, C. Li, et al., Nano Res. 15, 4039 (2022). https://doi.org/10.1007/s12274-021-4009-4

    Article  CAS  Google Scholar 

  56. J. W. Buchler, C. Dreher, and F. M. Kunzel, Synthesis and Coordination Chemistry of Noble Metal Porphyrins (Springer-Verlag, Berlin, 1995).

    Book  Google Scholar 

  57. E. Y. Tyulyaeva, Russ. J. Inorg. Chem. 64, 1775 (2019). https://doi.org/10.1134/S0036023619140110

    Article  CAS  Google Scholar 

  58. E. Y. Tyulyaeva, J. Organomet. Chem. 121484 (2020). https://doi.org/10.1016/j.jorganchem.2020.121484

  59. P. Dydio, H. M. Key, H. Hayashi, et al., J. Am. Chem. Soc. 139, 1750 (2017). https://doi.org/10.1021/jacs.6b11410

    Article  CAS  PubMed  Google Scholar 

  60. J. F. Hartwig, H. M. Key, P. Dydio, et al., Int. Publication Number WO, 2017/066562 A2, 2017.

    Google Scholar 

  61. M. W. Wolf, D. A. Vargas, and N. Lehnert, Inorg. Chem. 56, 5623 (2017). https://doi.org/10.1021/acs.inorgchem.6b03148

    Article  CAS  PubMed  Google Scholar 

  62. G. Sreenilayam, E. J. Moore, V. Steck, et al., Adv. Synth. Catal. 359, 2076 (2017). https://doi.org/10.1021/10.1002/adsc.201700202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. S. N. Natoli and J. F. Hartwig, Acc. Chem. Res. 52, 326 (2019). https://doi.org/10.1021/acs.accounts.8b00586

    Article  CAS  PubMed  Google Scholar 

  64. Z. Liu, J. Huang, Y. Gu, et al., J. Am. Chem. Soc. 144, 883 (2022). https://doi.org/10.1021/jacs.1c10975

    Article  CAS  PubMed  Google Scholar 

  65. V. S. Thirunavukkarasu, S. I. Kozhushkov, and L. Ackermann, Chem. Commun. 50, 29 (2014). https://doi.org/10.1039/c3cc47028h

    Article  CAS  Google Scholar 

  66. G. Manca, E. Gallo, D. Intrieri, et al., ACS Catal. 4, 823 (2014). https://doi.org/10.1021/cs4010375

    Article  CAS  Google Scholar 

  67. P. Zardi, A. Savoldelli, D. M. Carminati, et al., ACS Catal. 4, 3820 (2014). https://doi.org/10.1021/cs5012712

    Article  CAS  Google Scholar 

  68. Z. Guo, X. Guan, J.-S. Huang, et al., Chem.-Eur. J. 19, 11320 (2013). https://doi.org/10.1002/chem.201300021

    Article  CAS  PubMed  Google Scholar 

  69. P. Zardi, A. Caselli, P. Macchi, et al., Organometallics 33, 2210 (2014). https://doi.org/10.1021/om500064d

    Article  CAS  Google Scholar 

  70. D. Intrieri, D. Carminati, and E. Gallo, J. Porphyrins Phthalocyanines 20, 1 (2016). https://doi.org/10.1142/S1088424616500383

  71. D. Tatsumi, T. Tsukamoto, R. Honna, et al., Chem. Lett. 46, 1311 (2017). https://doi.org/10.1246/cl.170521

    Article  CAS  Google Scholar 

  72. D. Carrie, T. Roisnel, and G. Simonneaux, Polyhedron 205, 115294 (2021). https://doi.org/10.1016/j.poly.2021.115294

    Article  CAS  Google Scholar 

  73. K. P. Shing, Q. Wan, X.-Y. Chang, et al., Chem. Commun. 56, 4428 (2020). https://doi.org/10.1039/c9cc09972g

    Article  CAS  Google Scholar 

  74. T.-H. Chen, Z. Yuan, A. Carver, et al., Appl. Catal., A 478, 275 (2014). https://doi.org/10.1016/j.apcata.2014.04.014

  75. K.-P. Shing, B. Cao, Y. Liu, et al., J. Am. Chem. Soc. 140, 7032 (2018). https://doi.org/10.1021/jacs.8b04470

    Article  CAS  PubMed  Google Scholar 

  76. N. Kato, Y. Hamaguchi, N. Umezawa, et al., J. Porphyrins Phthalocyanines 19, 1 (2015). https://doi.org/10.1142/S1088424615500297

    Article  CAS  Google Scholar 

  77. J. Malone, S. Klaine, C. Alcantar, et al., New J. Chem. 45, 4977 (2021). https://doi.org/10.1039/d1nj00189b

    Article  CAS  Google Scholar 

  78. K.-H. Chan, X. Guan, and V. K.-Y. Lo, et al., Angew. Chem., Int. Ed. Engl. 53, 2982 (2014). https://doi.org/10.1002/anie.201309888

    Article  CAS  PubMed  Google Scholar 

  79. E. G. Abucayon, D. R. Powell, and G. B. Richter-Addo, J. Am. Chem. Soc. 139, 9495 (2017). https://doi.org/10.1021/jacs.7b05209

    Article  CAS  PubMed  Google Scholar 

  80. L. Chen, H. Cui, Y. Wang, et al., Dalton Trans. 47, 3940 (2018). https://doi.org/10.1039/c8dt00434j

    Article  CAS  PubMed  Google Scholar 

  81. D. Carri, T. Roisnel, and G. Simonneaux, J. Mol. Struct. 1165, 101 (2018). https://doi.org/10.1016/j.molstruc.2018.03.108

    Article  CAS  Google Scholar 

  82. C.-M. Che and V. K.-Y. Lo, C.-Y. Zhou, et al., Chem. Soc. Rev. 40, 1950 (2011). https://doi.org/10.1039/c0cs00142b

    Article  CAS  PubMed  Google Scholar 

  83. W. Yang, H. Zhang, and L. Li, Organometallics 35, 3295 (2016). https://doi.org/10.1021/acs.organomet.6b00490

    Article  CAS  Google Scholar 

  84. A. Ganai, B. Ball, and P. Sarkar, J. Phys. Chem. Lett. 14, 1832 (2023). https://doi.org/10.1021/acs.jpclett.2c03891

    Article  CAS  PubMed  Google Scholar 

  85. D. Hong, Y. Liu, L. Wu, et al., Angew. Chem., Int. Ed. Engl. 60, 18619 (2021). https://doi.org/10.1002/anie.202100668

    Article  CAS  PubMed  Google Scholar 

  86. S. Teramae, A. Kito, T. Shingaki, et al., Chem. Commun. 55, 8378 (2019). https://doi.org/10.1039/c9cc03041g

    Article  CAS  Google Scholar 

  87. S. Muratsugu, H. Baba, and T. Tanimoto, Chem. Commun. 54, 5114 (2018). https://doi.org/10.1039/c8cc00896e

    Article  CAS  Google Scholar 

  88. F. Limosani, H. Remita, P. Tagliatesta, et al., Materials 15, 1207 (2022). https://doi.org/10.3390/ma15031207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. O. I. Boomen, R. G. E. Coumans, N. Akeroyd, et al., Tetrahedron 73, 5029 (2017). https://doi.org/10.1016/j.tet.2017.05.035

    Article  CAS  Google Scholar 

  90. T. Terada, T. Kurahashi, and S. Matsubara, Org. Lett. 16, 2594 (2014). https://doi.org/10.1021/ol500625r

    Article  CAS  PubMed  Google Scholar 

  91. K. Wu, C.-Y. Zhou, and C.-M. Che, Org. Lett. 21, 85 (2019). https://doi.org/10.1021/acs.orglett.8b03514

    Article  CAS  PubMed  Google Scholar 

  92. C. Damiano, P. Sonzini, D. Intrieri, et al., J. Porphyrins Phthalocyanines 23, 1 (2019). https://doi.org/10.1142/s1088424619501888

    Article  CAS  Google Scholar 

  93. B. Kräutler, F. J. Widner, C. Kieninger, et al., Synthesis 53, 332 (2021). https://doi.org/10.1055/s-0040-1707288

    Article  CAS  Google Scholar 

  94. M. J. F. Calvete, M. Pineiro, L. D. Dias, et al., ChemCatChem 10, 3615 (2018). https://doi.org/10.1002/cctc.201800587

    Article  CAS  Google Scholar 

  95. M. J. Cryle and J. J. De Voss, Angew. Chem., Int. Ed. Engl. 45, 8221 (2006). https://doi.org/10.1002/anie.200603411

    Article  CAS  PubMed  Google Scholar 

  96. M. N. Podgorski, T. Coleman, L. R. Churchman, et al., Chem.-Eur. J. e202202 (2022). https://doi.org/10.1002/chem.202202428

  97. D. Dolphin, A. Forman, D. C. Borg, et al., Proc. Natl. Acad. Sci. USA 68, 614 (1971).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. N. Carnieri and A. Harriman, Inorg. Chim. Acta 62, 103 (1982). https://doi.org/10.1016/S0020-169388485-6

    Article  CAS  Google Scholar 

  99. J. Mack and M. J. Stillman, J. Porphyrins Phthalocyanines 5, 67 (2001). https://doi.org/10.1002/1099-1409(200101)5:1<67::AID-JPP300>3.0.CO;2-3

  100. I. Morishima, Y. Takamuki, and Y. Shiro, J. Am. Chem. Soc. 106, 7666 (1984). https://doi.org/10.1021/ja00337a002

    Article  CAS  Google Scholar 

  101. T. Satoh, M. Minoura, H. Nakano, et al., Angew. Chem., Int. Ed. Engl. 55, 2235 (2016). https://doi.org/10.1002/anie.201510734

    Article  CAS  PubMed  Google Scholar 

  102. K. Sudoh, T. Satoh, T. Amaya, et al., Chem.-Eur. J. 23, 16364 (2017). https://doi.org/10.1002/chem.201703664

    Article  CAS  PubMed  Google Scholar 

  103. M. Mutoh, K. Sudoh, K. Furukawa, et al., Asian J. Org. Chem. 8, 352 (2019). https://doi.org/10.1002/ajoc.201900085

    Article  CAS  Google Scholar 

  104. Y. Matano, 11th International Conference on Porphyrins and Phthalocyanines. Book of Abstracts. Society of Porphyrins & Phthalocyanines, Buffalo, 2021, p. 145.

  105. E. N. Ovchenkova, N. G. Bichan, A. A. Tsaturyan, et al., J. Phys. Chem. C 124, 4010 (2020). https://doi.org/10.1021/acs.jpcc.9b11661

    Article  CAS  Google Scholar 

  106. P. Singh, A. K. Das, B. Sarkar, et al., Inorg. Chem. 47, 7106 (2008). https://doi.org/10.1021/ic702371t

    Article  CAS  PubMed  Google Scholar 

  107. M. A. El-Attar, N. Xu, D. Awasabisah, et al., Polyhedron 40, 105 (2012). https://doi.org/10.1016/j.poly.2012.03.034

    Article  CAS  Google Scholar 

  108. S. Dey, D. Sil, Y. A. Pandit, et al., Inorg. Chem. 55, 3229 (2016). https://doi.org/10.1021/acs.inorgchem.5b02065

    Article  CAS  PubMed  Google Scholar 

  109. Y. A. Pandit, S. J. Shah, and S. P. Rath, Z. Anorg. Allg. Chem. 644, 856 (2018). https://doi.org/10.1002/zaac.201800247

    Article  CAS  Google Scholar 

  110. V. N. Nemykin, S. V. Dudkin, M. Fathi-Rasekh, et al., Inorg. Chem. 54, 10711 (2015). https://doi.org/10.1021/acs.inorgchem.5b01614

    Article  CAS  PubMed  Google Scholar 

  111. Y. Yasu, A. Inagaki, and M. Akita, J. Organomet. Chem. 753, 48 (2013). https://doi.org/10.1016/j.jorganchem.2013.12.008

    Article  CAS  Google Scholar 

  112. D. Awasabisah, N. Xu, K. P. S. Gautam, et al., Dalton Trans. 42, 8537 (2013). https://doi.org/10.1039/c3dt33109a

    Article  CAS  PubMed  Google Scholar 

  113. S.-M. Law, D. Chen, and S. L. Chan, Chem. Eur. J. 20, 11035 (2014). https://doi.org/10.1002/chem.201305084

    Article  CAS  PubMed  Google Scholar 

  114. S. K. Leung, W.-M. Tsui, J.-S. Huang, et al., J. Am. Chem. Soc. 127, 16629 (2005). https://doi.org/10.1021/ja0542789

    Article  CAS  PubMed  Google Scholar 

  115. E. Vanover, Y. Huang, and L. Xu, Org. Lett. 12, 2246 (2010). https://doi.org/10.1021/ol1005938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. S. V. Zaitseva, E. Yu. Tyulyaeva, D. V. Tyurin, et al., J. Organomet. Chem. 912, 121164 (2020). https://doi.org/10.1016/j.jorganchem.2020.121164

    Article  CAS  Google Scholar 

  117. J. T. Groves, K. Shalyaev, and J. Lee, The Porphyrin Handbook; Biochemistry and Binding: Activation of Small Molecules, vol. 4 (Academic Press, New York, 2000).

    Google Scholar 

  118. C.-M. Che, C. Ho, and T.-C. Lau, J. Chem. Soc., Dalton Trans. 5, 1259 (1991). https://doi.org/10.1039/dt9910001259

    Article  Google Scholar 

  119. P. K. Sharma, S. P. de Visser, F. Ogliaro, et al., J. Am. Chem. Soc. 125, 2291 (2003). https://doi.org/10.1021/ja0282487

    Article  CAS  PubMed  Google Scholar 

  120. C. Wang, K. V. Shalyaev, M. Bonchio, et al., Inorg. Chem. 45, 4769 (2006). https://doi.org/10.1021/ic0520566

    Article  CAS  PubMed  Google Scholar 

  121. R. Zhang, E. Vanover, W. Luo, et al., Dalton Trans. 43, 8749 (2014). https://doi.org/10.1039/c4dt00649f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. L.-L. Zhang, X.-Y. Wang, and K.-Y. Jiang, Dalton Trans. 47, 5286 (2018). https://doi.org/10.1039/c8dt00614h

    Article  CAS  PubMed  Google Scholar 

  123. S. V. Zaitseva, E. Yu. Tyulyaeva, D. V. Tyurin, et al., Polyhedron 217, 115739 (2022). https://doi.org/10.1016/j.poly.2022.115739

    Article  CAS  Google Scholar 

  124. E. Yu. Tyulyaeva, T. N. Lomova, and E. G. Mozh-zhukhina, Russ. J. Coord. Chem. 29, 564 (2003). https://doi.org/10.1023/A:1025162321560

    Article  CAS  Google Scholar 

  125. E. T. Shimomura, M. A. Phillippi, H. M. Goff, et al., J. Am. Chem. Soc. 103, 6778 (1981). https://doi.org/10.1021/ja00412a055

    Article  CAS  Google Scholar 

  126. W. R. Scheidt, K. E. Brancato-Buentello, H. Song, et al., Inorg. Chem. 35, 7500 (1996). https://doi.org/10.1021/ic9610748

    Article  CAS  Google Scholar 

  127. C. Ercolani, J. Jubb, G. Pennesi, et al., Inorg. Chem. 34, 2535 (1995). https://doi.org/10.1021/ic00114a010

    Article  CAS  Google Scholar 

  128. A. P. Kroitor, L. P. Cailler, A. G. Martynov, et al., Dalton Trans. 46, 15651 (2017). https://doi.org/10.1039/c7dt03703a

    Article  CAS  PubMed  Google Scholar 

  129. A. B. Sorokin, Catal. Today 373, 38 (2021). https://doi.org/10.1016/j.cattod.2021.03.016

    Article  CAS  Google Scholar 

  130. S. A. Zaitseva and D. V. Zdanovich, Tyurin, and O. I. Koifman, Russ. J. Inorg. Chem. 67, 276 (2022). https://doi.org/10.1134/S0036023622030160

    Article  CAS  Google Scholar 

  131. M. G. Quesne, D. Senthilnathan, D. Singh, et al., ACS Catal. 6, 2230 (2016). https://doi.org/10.1021/acscatal.5b02720

    Article  CAS  Google Scholar 

  132. L. P. Cailler, M. Clemancey, J. Barilone, et al., Inorg. Chem. 59, 1104 (2020). https://doi.org/10.1021/acs.inorgchem.9b02718

    Article  CAS  PubMed  Google Scholar 

  133. A. B. Sorokin, Adv. Inorg. Chem. 79, 23 (2022). https://doi.org/10.1016/bs.adioch.2021.12.002

    Article  CAS  Google Scholar 

  134. C. S. Chan, S. Y. Lee, and K. S. Chan, Organometallics 32, 151 (2012). https://doi.org/10.1021/om3009519

    Article  CAS  Google Scholar 

  135. K. Elouarzaki, A. Le Goff, M. Holzinger, et al., J. Am. Chem. Soc. 134, 14078 (2012). https://doi.org/10.1021/ja304589m

    Article  CAS  PubMed  Google Scholar 

  136. S. Yamazaki, N. Fujiwara, S. Takeda, et al., Chem. Commun. 46, 3607 (2010). https://doi.org/10.1039/c003026k

    Article  CAS  Google Scholar 

  137. Z. Ling, L. Yun, L. Liu, et al., Chem. Commun. 49, 4214 (2013). https://doi.org/10.1039/c2cc37263k

    Article  CAS  Google Scholar 

  138. L. Yun, L. Zhen, Z. Wang, et al., J. Porphyrins Phthalocyanines 18, 937 (2014). https://doi.org/10.1142/s108842461450076x

    Article  CAS  Google Scholar 

  139. K. S. Chan and Y. W. Chan, Organometallics 33, 3702 (2014). https://doi.org/10.1021/om500313g

    Article  CAS  Google Scholar 

  140. K. Chan and S. Feng, Synlett 29, 759 (2017). https://doi.org/10.1055/s-0036-1589129

    Article  CAS  Google Scholar 

  141. H. Pal, A. Nina, O. K. Nag, et al., J. Inorg. Biochem. 235, 111935 (2022). https://doi.org/10.1016/j.jinorgbio.2022.111935

    Article  CAS  PubMed  Google Scholar 

  142. S. Feng, C. Chen, and K. S. Cha, Organometallics 6, 848 (2020). https://doi.org/10.1021/acs.organomet.0c00022

    Article  CAS  Google Scholar 

  143. K. Anjali, M. Ahmed, J. Christopher, et al., Dalton Trans. 47, 12353 (2018). https://doi.org/10.1039/c8dt02151a

    Article  CAS  PubMed  Google Scholar 

  144. E. Elakkari, B. Floris, P. Galloni, et al., Eur. J. Org. Chem. 5, 889 (2005). https://doi.org/10.1002/ejoc.200400746

    Article  CAS  Google Scholar 

  145. S. J. Thompson, M. R. Brennan, S. Y. Lee, et al., Chem. Soc. Rev. 47, 929 (2018). https://doi.org/10.1039/c7cs00582b

    Article  CAS  PubMed  Google Scholar 

  146. J. Zhang, W. Zhang, and M. Xu, J. Am. Chem. Soc. 140, 6656 (2018). https://doi.org/10.1021/jacs.8b03029

    Article  CAS  PubMed  Google Scholar 

  147. C. M. Tam and K. S. Chan, J. Organomet. Chem. 887, 80 (2019). https://doi.org/10.1016/j.jorganchem.2019.02.023

    Article  CAS  Google Scholar 

  148. Y. Wu, C. Chen, and K. S. Chan, Dalton Trans. 47, 12879 (2018). https://doi.org/10.1039/c8dt02168f

    Article  CAS  Google Scholar 

  149. C. M. Tam, C. T. To, and K. S. Chan, Dalton Trans. 46, 10057 (2017). https://doi.org/10.1039/c7dt02002c

    Article  CAS  PubMed  Google Scholar 

  150. C. T. To and K. S. Chan, Acc. Chem. Res. 50 (2017). doi 1702https://doi.org/10.1021/acs.accounts.7b00150

  151. W. Cui and B. B. Wayland, J. Am. Chem. Soc. 126, 8266 (2004). https://doi.org/10.1021/ja049291s

    Article  CAS  PubMed  Google Scholar 

  152. H.-X. Wang, K. Wua, and C.-M. Che, Synlett 32, 249 (2021). https://doi.org/10.1055/s-0040-1707221

    Article  CAS  Google Scholar 

  153. H. Y. Yu, H. K. Lee, and K. S. Chan, Organometallics 40, 3733 (2021). https://doi.org/10.1021/acs.organomet.1c00457

    Article  CAS  Google Scholar 

  154. C. T. To and K. S. Chan, Eur. J. Org. Chem. 39, 1002 (2019). https://doi.org/10.1002/ejoc.201900852

    Article  CAS  Google Scholar 

  155. B. B. Wayland, V. L. Coffin, and M. D. Farnos, Inorg. Chem. 27, 2745 (1988). https://doi.org/10.1021/ic00288a035

    Article  CAS  Google Scholar 

  156. B. B. Wayland, A. E. Sherry, and A. G. Bunn, J. Am. Chem. Soc. 115, 7675 (1993). https://doi.org/10.1021/ja00070a011

    Article  CAS  Google Scholar 

  157. B. B. Wayland, K. J. Balkus, and M. D. Farnos, Organometallics 8, 950 (1989). https://doi.org/10.1021/om00106a014

    Article  CAS  Google Scholar 

  158. X. Fu and B. B. Wayland, J. Am. Chem. Soc. 126, 2623 (2004). https://doi.org/10.1021/ja039218m

    Article  CAS  PubMed  Google Scholar 

  159. K. S. Choi, T. H. Lai, S. Y. Lee, et al., Organometallics 30, 2633 (2011). https://doi.org/10.1021/om200075f

    Article  CAS  Google Scholar 

  160. S. Yamazaki, T. Ioroi, Y. Yamada, et al., Angew. Chem., Int. Ed. Engl. 45, 3120 (2006). https://doi.org/10.1002/anie.200504379

    Article  CAS  PubMed  Google Scholar 

  161. S. Yamazaki, M. Yao, M. Asahi, et al., Dalton Trans. 44, 13823 (2015). https://doi.org/10.1039/c5dt01453k

    Article  CAS  PubMed  Google Scholar 

  162. J. N. Tiwari, R. N. Tiwari, G. Singh, et al., Nano Energy 2, 553 (2013). https://doi.org/10.1016/j.nanoen.2013.06.009

    Article  CAS  Google Scholar 

  163. S. M. M. Ehteshami and S. H. Chan, Electrochim. Acta 93, 334 (2013). https://doi.org/10.1016/j.electacta.2013.01.086

    Article  CAS  Google Scholar 

  164. S. Yamazaki, Y. Yamada, S. Takeda, et al., Phys. Chem. Chem. Phys. 12, 8968 (2010). https://doi.org/10.1039/b925413g

    Article  CAS  PubMed  Google Scholar 

  165. J. C. Biffinger, S. Uppaluri, H. Sun, et al., ACS Catal. 1, 764 (2011). https://doi.org/10.1021/cs2001187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. S. Kubo, A. Endo, and S. Yamazaki, J. Mater. Chem. A 6, 20044 (2018). https://doi.org/10.1039/c8ta05897k

    Article  CAS  Google Scholar 

  167. H. Sun, F. Xue, A. P. Nelson, et al., Inorg. Chem. 42, 4507 (2003). https://doi.org/10.1021/ic0345830

    Article  CAS  PubMed  Google Scholar 

  168. T. O. Dairo and L. K. Woo, Organometallics 36, 927 (2017). https://doi.org/10.1021/acs.organomet.6b00947

    Article  CAS  Google Scholar 

  169. B. J. Anding and L. K. Woo, Organometallics 32, 2599 (2013). https://doi.org/10.1021/om400098v

    Article  CAS  Google Scholar 

  170. Y. Wang, Z. Zhou, and L. Zhao, ACS Appl. Mater. Interfaces 13, 10925 (2021). https://doi.org/10.1021/acsami.0c22276

    Article  CAS  PubMed  Google Scholar 

  171. J.-C. Wang, Z.-J. Xu, Z. Guo, et al., Chem. Commun. 48, 4299 (2012). https://doi.org/10.1039/c2cc30441d

    Article  CAS  Google Scholar 

  172. Y. Wang, H. Cui, and Z.-W. Wei, Chem. Sci. 8, 775 (2017). https://doi.org/10.1039/c6sc03288e

    Article  CAS  PubMed  Google Scholar 

  173. Y. Bian, X. Qu, and K. S. Chan, Organometallics 39, 1376 (2020). https://doi.org/10.1021/acs.organomet.0c00100

    Article  CAS  Google Scholar 

  174. C. W. Fong, H. Y. Yu, C. P. Gros, et al., New J. Chem. 43, 3656 (2019). https://doi.org/10.1039/c8nj05664a

    Article  CAS  Google Scholar 

  175. B. Li and K. S. Chan, Organometallics 27, 4034 (2008). https://doi.org/10.1021/om701144a

    Article  CAS  Google Scholar 

  176. N. G. Bichan and T. N. Lomova, et al., Russ. J. Inorg. Chem. 67, 338 (2022). https://doi.org/10.1134/S0036023622030147

    Article  Google Scholar 

  177. C. Swistak, J. L. Cornillon, J. E. Anderson, et al., Organometallics 6, 2146 (1987). https://doi.org/10.1021/om00153a020

    Article  CAS  Google Scholar 

  178. S.-C. So, W.-M. Cheung, W.-H. Chiu, et al., Dalton Trans. 48, 8340 (2019). https://doi.org/10.1039/c9dt00244h

    Article  CAS  PubMed  Google Scholar 

  179. T. L. Lam, ChungT. Ka, and C. Yang, Chem. Sci. 10, 293 (2018). https://doi.org/10.1039/c8sc02920b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. K. M. Kadish, Y. J. Deng, C.-L. Yao, et al., Organometallics 7, 1979 (1988). https://doi.org/10.1021/om00099a012

    Article  CAS  Google Scholar 

  181. J.-L. Cornillon, J. E. Anderson, C. Swistak, et al., J. Am. Chem. Soc. 108, 7633 (1986). https://doi.org/10.1021/ja00284a030

    Article  CAS  PubMed  Google Scholar 

  182. K. M. Kadish, Y. Hu, P. Tagliatesta, et al., Inorg. Chem. 32, 2996 (1993). https://doi.org/10.1021/ic00066a007

    Article  CAS  Google Scholar 

  183. J. E. Anderson, Y. H. Liu, and K. M. Kadish, Inorg. Chem. 26, 4174 (1987). https://doi.org/10.1021/ic00272a008

    Article  CAS  Google Scholar 

  184. S. K. Yeung and K. S. Chan, Organometallics 24, 6426 (2005). https://doi.org/10.1021/om050661a

    Article  CAS  Google Scholar 

  185. S. R. Klei, T. D. Tilley, and R. G. Bergman, J. Am. Chem. Soc. 122, 1816 (2000). https://doi.org/10.1021/ja992954z

    Article  CAS  Google Scholar 

  186. T. N. Lomova, E. G. Mozhzhukhina, E. Y. Tyulyaeva, et al., Mendeleev Commun. 22, 196 (2012). https://doi.org/10.1016/j.mencom.2012.06.008

    Article  CAS  Google Scholar 

  187. L. S. Park-Gehrke, Dissertation, University of Washington, 2010.

  188. E. Yu. Tyulyaeva, E. G. Mozhzhukchina, N. G. Bichan, et al., Russ. J. Inorg. Chem. 60, 157 (2015). https://doi.org/10.1134/S0036023615020199

    Article  CAS  Google Scholar 

  189. E. Yu. Tyulyaeva, N. G. Bichan, E. G. Mozhzhukchina, et al., Russ. J. Phys. Chem. 90, 37 (2016). https://doi.org/10.1134/S0036024416010325

    Article  CAS  Google Scholar 

  190. N. G. Bichan, E. Yu. Tyulyaeva, and T. N. Lomova, Macroheterocycles 6, 144 (2013). https://doi.org/10.6060/mhc121212l

    Article  CAS  Google Scholar 

  191. T. N. Lomova, M. E. Klyueva, E. Y. Tyulyaeva, et al., J. Porphyrins Phthalocyanines 16, 1040 (2012). https://doi.org/10.1142/s1088424612500769

    Article  CAS  Google Scholar 

  192. I. P. Beletskaya, V. S. Tyurin, A. Y. Tsivadze, et al., Chem. Rev. 109, 1659 (2009). https://doi.org/10.1021/cr800247a

    Article  CAS  PubMed  Google Scholar 

  193. D. Sun, F. S. Tham, C. A. Reed, et al., J. Am. Chem. Soc. 124, 6604 (2002). https://doi.org/10.1021/ja017555u

    Article  CAS  PubMed  Google Scholar 

  194. T. Ishii, N. Aizawa, M. Yamashita, et al., J. Chem. Soc., Dalton Trans. 23, 4407 (2000). https://doi.org/10.1039/b006593p

    Article  Google Scholar 

  195. T. Hyakutake, H. Taguchi, H. Sakaue, et al., Polym. Adv. Technol. 19, 1262 (2008). https://doi.org/10.1002/pat.1122

    Article  CAS  Google Scholar 

  196. R. G. Parkhomenko, A. S. Sukhikh, D. D. Klyamer, et al., Phys. Chem. 121, 1200. https://doi.org/10.1021/acs.jpcc.6b10817

  197. N. S. Nikolaeva, R. G. Parkhomenko, D. D. Klyame, et al., Int. J. Hydrogen Energy 42, 28640 (2017). https://doi.org/10.1016/j.ijhydene.2017.09.129

  198. E. Yu. Tyulyaeva, O. V. Kosareva, M. E. Klyueva, et al., Russ. J. Inorg. Chem. 53, 1405 (2008). https://doi.org/10.1134/S0036023608090106

    Article  Google Scholar 

  199. T. N. Lomova, M. E. Klyueva, and E. Yu. Tyulyaeva, Russ. J. Phys. Chem. 85, 926 (2011). .https://doi.org/10.1134/S0036024411060215

    Article  CAS  Google Scholar 

  200. T. N. Lomova, E. Yu. Tyulyaeva, and M. E. Klyueva, Palladium: Compounds, Production and Applications, Ed. by K. M. Brady (Nova Science Publishers Inc., New York, 2010).

    Google Scholar 

  201. A. Gorski, V. Knyukshto, E. Zenkevich, et al., J. Photochem. Photobiol., A 354, 101 (2018). https://doi.org/10.1016/j.jphotochem.2017.09.002

    Article  CAS  Google Scholar 

  202. W.-P. To, Y. Liu, T.-C. Lau, et al., Chem.-Eur. J. 19, 5654 (2013). https://doi.org/10.1002/chem.201203774

    Article  CAS  PubMed  Google Scholar 

  203. S. K. Sahoo, A. A. Das, D. Deka, et al., J. Mol. Liq. 339, 116721 (2021). https://doi.org/10.1016/j.molliq.2021.116721

    Article  CAS  Google Scholar 

  204. D. Sirbu, C. Turta, E. A. Gibson, et al., Dalton Trans. 44, 14646 (2015). https://doi.org/10.1039/c5dt02191j

    Article  CAS  PubMed  Google Scholar 

  205. L. Ouyang and W. Wu, Curr. Opin. Green Sustain. Chem. 7, 46 (2017). https://doi.org/10.1016/j.cogsc.2017.07.005

    Article  Google Scholar 

  206. Y. Huang, L. Yang, M. Huang, et al., Particuology 22, 128 (2015). https://doi.org/10.1016/j.partic.2014.08.003

    Article  CAS  Google Scholar 

  207. I. D. Kostas, A. G. Coutsolelos, G. Charalambidis, et al., Tetrahedron Lett. 48, 6688 (2007). https://doi.org/10.1016/j.tetlet.2007.07.141

    Article  CAS  Google Scholar 

  208. K. U. Rao, R. M. Appa, J. Lakshmidevi, et al., Asian J. Org. Chem. 6, 751 (2017). https://doi.org/10.1002/ajoc.201700068

    Article  CAS  Google Scholar 

  209. K. U. Rao, J. Lakshmidevi, R. M. Appa, et al., ChemistrySelect 2, 7394 (2017). https://doi.org/10.1002/slct.201701413

    Article  CAS  Google Scholar 

  210. K. Bahrami and S. N. Kamrani, Appl. Organomet. Chem. 32 (2017). https://doi.org/10.1002/aoc.4102

  211. S. S. Prasad, B. R. Naidu, M. M. Hanafiah, et al., Molecules 26, 5390 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. L. Jiang, H.-N. Mak, E. R. H. Walter, et al., Chem. Sci. 12, 9977 (2021). https://doi.org/10.1039/d1sc01616d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. L. Rasheed, M. Yousuf, I. S. Youn, et al., RSC Adv. 6, 60546 (2016). https://doi.org/10.1039/c6ra09183k

    Article  CAS  Google Scholar 

  214. T. Alemohammad, N. Safari, S. Rayati, et al., Inorg. Chim. Acta 434, 198 (2015). https://doi.org/10.1016/j.ica.2015.05.023

    Article  CAS  Google Scholar 

  215. T. Alemohammad, S. Rayati, and N. Safari, J. Porphyrins Phthalocyanines 19, 1279 (2015). https://doi.org/10.1142/s1088424615501126

  216. Z. Ou, P. Chen, and K. M. Kadish, Dalton Trans. 39, 11272 (2010). https://doi.org/10.1039/c0dt00899k

    Article  CAS  PubMed  Google Scholar 

  217. P. Chen, O. S. Finikova, Z. Ou, et al., Inorg. Chem. 51, 6200 (2012). https://doi.org/10.1021/ic3003367

    Article  CAS  PubMed  Google Scholar 

  218. Y. Matano, T. Shibano, and H. Nakano, Inorg. Chem. 51, 12879 (2012). https://doi.org/10.1021/ic301835c

    Article  CAS  PubMed  Google Scholar 

  219. Lomova T.N. Axially Coordinated Metalloporphyrins in Science and Practice (Krasand, Moscow, 2018) [in Russian].

    Google Scholar 

  220. T. N. Lomova, M. E. Klyueva, E. G. Mozhzhukhina, et al., J. Struct. Chem. 55, 180 (2014). .https://doi.org/10.1134/S0022476614010314

    Article  CAS  Google Scholar 

  221. E. Yu. Tyulyaeva, T. N. Lomova, and L. G. Andrianova, Russ. J. Inorg. Chem. 46, 371 (2001).

    Google Scholar 

  222. R. P. Herrera and M. C. Gimeno, Chem. Rev. 121, 8311 (2021). https://doi.org/10.1021/acs.chemrev.0c00930

    Article  CAS  PubMed  Google Scholar 

  223. Z. Ou, K. M. Kadish, E. Wendo, et al., Inorg. Chem. 43, 2078 (2004). https://doi.org/10.1021/ic035070w

    Article  CAS  PubMed  Google Scholar 

  224. Z. Ou, T. Khoury, Y. Fang, et al., Inorg. Chem. 52, 2474 (2013). https://doi.org/10.1021/ic302380z

    Article  CAS  PubMed  Google Scholar 

  225. C.-Y. Zhou, P. W. H. Chan, and C.-M. Che, Org. Lett. 8, 325 (2006). https://doi.org/10.1021/ol052696c

    Article  CAS  PubMed  Google Scholar 

  226. A. Nijamudheen, D. Jose, and A. Datta, J. Phys. Chem. C 115, 2187 (2010). https://doi.org/10.1021/jp1101384

    Article  CAS  Google Scholar 

  227. G. Knör, Inorg. Chem. Commun. 4, 160 (2001). https://doi.org/10.1016/s1387-700300165-4

    Article  Google Scholar 

  228. M. Haeubl, L. M. Reith, B. Gruber, et al., J. Biol. Inorg. Chem. 14, 1037 (2009). https://doi.org/10.1007/s00775-009-0547-z

    Article  CAS  PubMed  Google Scholar 

  229. S. Müllegger, W. Schöfberger, M. Rashidi, et al., ACS Nano 5, 6480 (2011). https://doi.org/10.1021/nn201708c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. K.-C. Tong, D. Hu, and P.-K. Wan, Front. Chem. 8, 587207 (2020). https://doi.org/10.3389/fchem.2020.587207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. T. Rundstadler, E. Mothes, S. Amrane, et al., J. Inorg. Biochem. 223, 111551 (2021). https://doi.org/10.1016/j.jinorgbio.2021.111551

    Article  CAS  PubMed  Google Scholar 

  232. C. Nguyen, I. Toubia, S. Diring, et al., Dalton Trans. 50, 4583 (2021). https://doi.org/10.1039/d0dt03792c

    Article  CAS  PubMed  Google Scholar 

  233. X. Wang, J. Wang, J. Wang, et al., Nano Lett. 21, 3418 (2021). https://doi.org/10.1021/acs.nanolett.0c04915

    Article  CAS  PubMed  Google Scholar 

  234. R. W.-Y. Sun and C.-M. Che, Coord. Chem. Rev. 253, 1682 (2009). https://doi.org/10.1016/j.ccr.2009.02.017

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors’ own data were obtained using the equipment of the Center for Collective Use of Scientific Equipment “Verkhnevolzhsky Regional Center for Physicochemical Research.”

Funding

The work was carried out within the framework of the Program of State Academies of Sciences (no. 122040500043-7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Yu. Tyulyaeva.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

ABBREVIATIONS

MP, metalloporphyrin; H2TPP, 5,10,15,20-tetraphenyl-21H,23H-porphine; H2TTP, 5,10,15,20-tetratolyl-21H,23H-porphine; H2OEP, 2,3,7,8,12,13,17,18-octaethyl-21H,23H-porphine; H2MPOEP, 5-monophenyl-2,3,7,8,12, 13,17,18-octaethyl-21H,23H-porphine; H25,15DPOEP, 5,15-diphenyl-2,3,7,8,12,13,17,18-octaethyl-21H,23H-porphine; H2TetPOEP, 5,10,15,20-tetraphenyl-2,3,7,8,12,13,17,18-octaethyl-21H,23H-porphine; H2T(p-OMe)PP, 5,10,15,20-tetra(4-methoxy)-21H,23H-porphine; H2T(p-CF3)PP, 5,10,15,20-tetra(4-trifluoromethyl)-21H,23H-porphine; H2T(p-SO3)PP, 5,10,15,20-tetra(4-sulfonatophenyl)-21H,23H-porphine; H2TMP, 5,10,15,20-tetra(mesityl)-21H,23H-porphine (mesityl is 2,4,6-trimethylphenyl); H2TDCPP, 5,10,15,20-tetra(2,6-dichlorophenyl)-21H,23H-porphine; H2F20TPP, 5,10,15,20-tetra(pentafluorophenyl)-21H,23H-porphine; H2TCPP, 5,10,15,20-tetra(4-carboxyphenyl)-21H,23H-porphine; H2TFcP, 5,10,15,20-tetraferrocenyl-21H,23H-porphine; H2F20TPP, 5,10,15,20-tetra(pentafluorophenyl)-21H,23H-porphine; H2TTiPP, 5,10,15,20-tetra(2,4,6-triisopropylphenyl)-21H,23H-porphine; H2TPyrP, 5,10,15,20-tetra(1-pyrenyl)porphine; H2TMPy3Pyr1P, 5,10,15-tris(N-methylpyridinium-4-yl)-20-(1-pyrenyl)porphine; H2DAP, 5,15-diaza-10,20-di(2,4,6-trimethyl)porphine; H2Pc, phthalocyanine; H2(tBu)4Pc, tetra(tert-butyl)phthalocyanine; H2PcF16, hexadecafluorophthalocyanine; H2(salen), N,N'-bis(salicylidene)ethylenediamine; TBHP, tert-butylhydroperoxide; mCPBA, m-chlorine peroxybenzoic acid; IO4, periodate; PhI(OAc)2, iodobenzene diacetate; PPh3, triphenylphosphine; Py, pyridine; TEMPO, (2,2,6,6-tetramethylpiperidine-1-yl)oxyl.

Additional information

Translated by V. Avdeeva

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tyulyaeva, E.Y. Noble Metal Porphyrin Complexes. Intermediates of Catalytic Processes (A Review). Russ. J. Inorg. Chem. 68, 1537–1561 (2023). https://doi.org/10.1134/S0036023623602143

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023623602143

Keywords:

Navigation