Skip to main content
Log in

Radiation Formation of Interlayer Bridges in Bilayer Graphene

  • CONDENSED MATTER
  • Published:
JETP Letters Aims and scope Submit manuscript

The radiation formation of interlayer bridges in bilayer graphene has been studied with the nonorthogonal tight binding model. It has been shown that most (~85%) of the formed bridges have a low thermal stability excluding their application in elements of graphene electronics working at room temperature. Three types of stable bridges with the annealing activation energies of 1.50, 1.52, and 2.44 eV have been revealed. Estimates by the Arrhenius formula have shown that these bridge types have macroscopic lifetime at room temperature. It has been found that the radiation formation of bridges in bilayer graphene significantly differs from a similar process in graphite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science (Washington, DC, U. S.) 306, 666 (2004).

    Article  ADS  Google Scholar 

  2. A. E. Galashev and O. R. Rakhmanova, Phys. Usp. 57, 970 (2014).

    Article  ADS  Google Scholar 

  3. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature (London, U.K.) 438, 197 (2005).

    Article  ADS  Google Scholar 

  4. X. Liu and M. C. Hersam, Sci. Adv. 5 (2019). https://doi.org/10.1126/sciadv.aax6444

  5. A. I. Kochaev, K. P. Katin, M. M. Maslov, and R. M. Meftakhutdinov, J. Phys. Chem. Lett. 11, 5668 (2020).

    Article  Google Scholar 

  6. A. I. Kochaev, M. M. Maslov, K. P. Katin, V. Efimov, and I. Efimova, Mater. Today Nano 20, 100247 (2022).

  7. L. A. Chernozatonskii, P. B. Sorokin, A. G. Kvashnin, and D. G. Kvashnin, JETP Lett. 90, 134 (2009).

    Article  ADS  Google Scholar 

  8. P. V. Bakharev, M. Huang, M. Saxena, S. W. Lee, S. H. Joo, S. O. Park, J. Dong, D. C. Camacho-Mojica, S. Jin, Y. Kwon, M. Biswal, F. Ding, S. K. Kwak, Z. Lee, and R. S. Ruoff, Nat. Nanotechnol. 15, 59 (2019).

    Article  ADS  Google Scholar 

  9. L. A. Chernozatonskii, K. P. Katin, V. A. Demin, and M. M. Maslov, Appl. Surf. Sci. 537, 148011 (2021).

  10. T. Ohta, A. Bostwick, T. Seyller, K. Horn, and E. Rotenberg, Science (Washington, DC, U. S.) 313, 951 (2006).

    Article  ADS  Google Scholar 

  11. Y. Cao, D. Chowdhury, D. Rodan-Legrain, O. Rubies-Bigorda, K. Watanabe, T. Taniguchi, T. Senthi, and P. Jarillo-Herrero, Phys. Rev. Lett. 124, 076801 (2020).

  12. Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, and P. Jarillo-Herrero, Nature (London, U.K.) 556, 43 (2018).

    Article  ADS  Google Scholar 

  13. G. E. Volovik, JETP Lett. 107, 516 (2018).

    Article  ADS  Google Scholar 

  14. Y. Zhang, T. Tang, and C. Girit, Nature (London, U.K.) 459, 820 (2009).

    Article  ADS  Google Scholar 

  15. G. Fiori and G. Iannaccone, IEEE Electron Dev. Lett. 30, 261 (2009).

    Article  ADS  Google Scholar 

  16. M.-C. Chen, C.-L. Hsu, and T.-J. Hsueh, IEEE Electron Dev. Lett. 35, 590 (2014).

    Article  ADS  Google Scholar 

  17. Y. Tang, Z. Liu, and Z. Shen, Sens. Actuators, B 238, 182 (2017).

    Article  Google Scholar 

  18. L. A. Chernozatonskii, V. A. Demin, and Ph. Lambin, Phys. Chem. Chem. Phys. 18, 27432 (2016).

    Article  Google Scholar 

  19. A. A. Artyukh and L. A. Chernozatonskii, JETP Lett. 109, 472 (2019).

    Article  ADS  Google Scholar 

  20. V. A. Demin, D. G. Kvashnin, P. Vancso, G. Mark, and L. A. Chernozatonskii, JETP Lett. 112, 305 (2020).

    Article  ADS  Google Scholar 

  21. M. M. Maslov, A. I. Podlivaev, and K. P. Katin, Mol. Simul. 42, 305 (2016).

    Article  Google Scholar 

  22. K. P. Katin, K. S. Grishakov, A. I. Podlivaev, and M. M. Maslov, J. Chem. Theory Comput. 16, 2065 (2020).

    Article  Google Scholar 

  23. K. P. Katin and M. M. Maslov, J. Phys. Chem. Solids 108, 82 (2017).

    Article  ADS  Google Scholar 

  24. L. A. Openov and A. I. Podlivaev, JETP Lett. 109, 710 (2019).

    Article  ADS  Google Scholar 

  25. A. I. Podlivaev, K. C. Grishakov, K. P. Katin, and M. M. Maslov, JETP Lett. 113, 169 (2021).

    Article  ADS  Google Scholar 

  26. A. I. Podlivaev, K. C. Grishakov, K. P. Katin, and M. M. Maslov, JETP Lett. 114, 143 (2021).

    Article  ADS  Google Scholar 

  27. A. I. Podlivaev and K. P. Katin, JETP Lett. 92, 52 (2010).

    Article  ADS  Google Scholar 

  28. M. M. Maslov, K. P. Katin, A. I. Avkhadieva, and A. I. Podlivaev, Russ. J. Phys. Chem. B 8, 152 (2014).

    Article  Google Scholar 

  29. A. I. Podlivaev, JETP Lett. 115, 348 (2022).

    Article  ADS  Google Scholar 

  30. K. P. Katin and M. M. Maslov, Mol. Simul. 44, 703 (2018).

    Article  Google Scholar 

  31. Yu. S. Nechaev, E. A. Denisov, N. A. Shurygina, A. O. Cheretaeva, E. K. Kostikova, and S. Yu. Davydov, JETP Lett. 114, 337 (2021).

    Article  ADS  Google Scholar 

  32. A. I. Podlivaev, JETP Lett. 111, 613 (2020).

    Article  ADS  Google Scholar 

  33. F. Seitz and J. S. Koehler, Solid State Phys. 2, 305 (1956).

    Google Scholar 

  34. Chemical Encyclopedia, Ed. by I. L. Knunyants (Sov. Entsiklopediya, Moscow, 1988), Vol. 1 [in Russian].

    Google Scholar 

  35. E. I. Zhmurikov, I. A. Bubnenkov, V. V. Dremov, S. I. Samarin, A. S. Pokrovskii, and D. V. Khar’kov, arxiv: 1307.1869 (2013).

  36. B. Farbos, H. Freeman, T. Hardcastle, J.-P. da Costa, R. Brydson, A. J. Scott, P. Weisbecker, C. Germain, G. L. Vignoles, and J.-M. Leyssale, Carbon 120, 111 (2017). https://doi.org/10.1016/j.carbon.2017.05.009

    Article  Google Scholar 

  37. E. M. Pearson, T. Halicioglu, and W. A. Tiller, Phys. Rev. A 32, 3030 (1985).

    Article  ADS  Google Scholar 

  38. G. V. Vineyard, J. Phys. Chem. Solids 3, 121 (1957).

    Article  ADS  Google Scholar 

  39. A. M. Kosevich, Fundamentals of Crystal Lattice Mechanics (Nauka, Moscow, 1972) [in Russian].

    Google Scholar 

  40. A. A. El-Barbary, Appl. Surf. Sci. 426, 238 (2017).

    Article  ADS  Google Scholar 

  41. R. H. Telling, C. P. Ewels, A. A. El-Barbary, and M. I. Heggie, Nat. Mater. 2, 333 (2003). https://doi.org/10.1038/nmat876

    Article  ADS  Google Scholar 

  42. S. B. Isbill, A. E. Shields, D. J. Mattei-Lopez, R. J. Kapsimalis, and J. L. Niedziela, Comput. Mater. Sci. 195, 110477 (2021).

  43. L. M. Brown, A. Kelly, and R. M. Mayer, Philos. Mag. 19, 721 (1969).

    Article  ADS  Google Scholar 

  44. W. N. Reynolds and P. A. Thrower, Philos. Mag. 12, 573 (1965).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

I am grateful to K.P. Katin for discussion of the results.

Funding

This work was supported by of the Ministry of Science and Higher Education of the Russian Federation (program Priority 2030 for National Research Nuclear University MEPhI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Podlivaev.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by R. Tyapaev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Podlivaev, A.I. Radiation Formation of Interlayer Bridges in Bilayer Graphene. Jetp Lett. 117, 462–469 (2023). https://doi.org/10.1134/S0021364023600271

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364023600271

Navigation