Skip to main content
Log in

On the Physics and Atomic Mechanisms of Molecular Hydrogen Intercalation into Graphite Nanofibers

  • CONDENSED MATTER
  • Published:
JETP Letters Aims and scope Submit manuscript

The fundamental experimental data obtained in [I.O. Bashkin et al., JETP Lett. 79, 226 (2004)] on three states of hydrogen corresponding to physical sorption (state 1), chemisorption (state 2), and intercalation (state 3) in graphite nanofibers subjected to hydrogenation in H2 at a pressure of 9 GPa and a temperature of 753 K (with subsequent quenching), which led to a hydrogen content of up to 6.3 wt %, have been analyzed in detail using an effective method for processing thermal desorption spectra of hydrogen. In particular, attention is paid to the physics and atomic mechanisms of intercalation of specific molecular hydrogen (state 3) in graphite nanofibers, which is slightly more stable than chemisorbed hydrogen (state 2), and to comparison with the results of analysis and interpretation of the unique data obtained in [C. Park et al., J. Phys. Chem. B 103,10572 (1999)] on the “super” hydrogen storage in the know-how activated graphite nanofibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. I. O. Bashkin, V. E. Antonov, A. V. Bazhenov, I. K. Bdikin, D. N. Borisenko, E. P. Krinichnaya, A. P. Moravskii, A. I. Kharkunov, Yu. M. Shul’ga, Yu. A. Osip’yan, and E. G. Ponyatovskii, JETP Lett. 79, 226 (2004).

    Article  ADS  Google Scholar 

  2. Yu. M. Shul’ga, I. O. Bashkin, A. V. Krestinin, V. M. Martynenko, G. I. Zvereva, I. V. Kondrat’eva, Yu. A. Osip’yan, and E. G. Ponyatovskii, JETP Lett. 80, 752 (2004).

    Google Scholar 

  3. K. P. Meletov, A. A. Maksimov, I. I. Tartakovskii, I. O. Bashkin, V. V. Shestakov, A. V. Krestinin, Yu. M. Shulga, K. S. Andrikopoulos, J. Arvanitidis, D. Chistofilos, and G. A. Kourouklis, Chem. Phys. Lett. 433, 335 (2007).

    Article  ADS  Google Scholar 

  4. M. Brzhezinskaya, V. Shamko, G. Yalovega, A. Krestinin, I. Bashkin, and E. Bogoslavskaja, J. Electron Spectrosc. Rel. Phenom. 196, 99 (2014).

    Article  Google Scholar 

  5. M. Brzhezinskaya, E. A. Belenkov, V. A. Greshnyakov, G. E. Yalovega, and I. O. Bashkin, J. Alloys Compd. 792, 713 (2019).

    Article  Google Scholar 

  6. Yu. S. Nechaev, Phys. Usp. 49, 563 (2006).

    Article  ADS  Google Scholar 

  7. Yu. S. Nechaev and T. N. Veziroglu, Int. J. Phys. Sci. 10, 54 (2015).

    Article  Google Scholar 

  8. Yu. S. Nechaev, N. M. Alexandrova, A. O. Cheretaeva, V. L. Kuznetsov, A. Öchsner, E. A. Kostikova, and Yu. V. Zaika, Int. J. Hydrogen Energy 45, 25030 (2020).

    Article  Google Scholar 

  9. Yu. V. Zaika, E. K. Kostikova, and Yu. S. Nechaev, Tech. Phys. 66, 210 (2021).

    Article  Google Scholar 

  10. Yu. S. Nechaev, N. M. Alexandrova, N. A. Shurygina, A. O. Cheretaeva, E. A. Denisov, and E. K. Kostikova, Bull. Russ. Acad. Sci.: Phys. 85, 701 (2021).

    Article  Google Scholar 

  11. Yu. S. Nechaev, N. M. Alexandrova, N. A. Shurygina, A. O. Cheretaeva, E. K. Kostikova, and A. Öchsner, J. Nucl. Mater. 535, 152162 (2020).

  12. X. Zhao, R. A. Outlaw, J. J. Wang, M. Y. Zhu, G. D. Smith, and B. J. Holloway, J. Chem. Phys. 124, 194704 (2006).

  13. I. Nayyar, B. Ginovska, A. Karkamkar, T. Gennett, and T. Autrey, J. Carbon Res. 6, 1 (2020).

  14. S. Yu. Davydov, Phys. Solid State 60, 812 (2018).

    Article  ADS  Google Scholar 

  15. Z. H. Aitken and R. Huang, J. Appl. Phys. 107, 123531 (2010).

  16. W. Wang, S. Dai, X. Li, D. J. Srolovitz, and Q. Zheng, Nat. Commun. 6, 7853 (2015).

    Article  ADS  Google Scholar 

  17. Yu. S. Nechaev, N. M. Alexandrova, N. A. Shurygina, and A. O. Cheretaeva, Nanotubes Carbon Nanostruct. 28, 233 (2020).

    Article  ADS  Google Scholar 

  18. Yu. S. Nechaev, E. A. Denisov, N. M. Aleksandrova, N. A. Shurygina, A. O. Cheretaeva, E. K. Kostikova, and A. Öchsner, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 17 (2022, in press).

  19. Yu. S. Nechaev, E. A. Denisov, A. O. Cheretaeva, Yu. V. Gavrilov, and S. V. Verzhichinskaya, in Proceedings of the 15th International Conference on Advanced Nanostructures ACNS’2021, St.-Petersburg (2021), p. 131.

  20. Yu. S. Nechaev, in Proceedings of the 7th International Conference on Catalysis, Chemical Engineering and Technology, Magnus Group, Tokyo (2021), p. 38.

  21. C. Park, P. E. Anderson, A. Chambers, C. D. Tan, R. Hidalgo, and N. M. Rodriguez, J. Phys. Chem. B 103,10572 (1999).

    Article  Google Scholar 

  22. R. T. K. Baker, Encyclopedia of Materials: Science and Technology (Elsevier, Amsterdam, 2005), p. 932.

    Google Scholar 

  23. B. K. Gupta, R. S. Tiwari, and O. N. Srivastava, J. Alloys Compd. 381, 301 (2004).

    Article  Google Scholar 

  24. A. A. Artyukh and L. A. Chernozatonskii, JETP Lett. 109, 472 (2019).

    Article  ADS  Google Scholar 

  25. V. A. Demin, D. G. Kvashnin, P. Vancso, G. Mark, and L. A. Chernozatonskii, JETP Lett. 112, 305 (2020).

    Article  ADS  Google Scholar 

  26. A. I. Podlivaev, JETP Lett. 110, 691 (2019).

    Article  ADS  Google Scholar 

  27. A. I. Podlivaev, JETP Lett. 111, 613 (2020).

    Article  ADS  Google Scholar 

  28. A. I. Podlivaev, K. S. Grishakov, K. P. Katin, and M. M. Maslov, JETP Lett. 113, 169 (2021).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to M.M. Brzhezinskaya for stimulating discussion of the results.

Funding

This study was supported by the Russian Foundation for Basic Research (project no. 18-29-19149 mk).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. S. Nechaev.

Additional information

Translated by R. Bando

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nechaev, Y.S., Denisov, E.A., Shurygina, N.A. et al. On the Physics and Atomic Mechanisms of Molecular Hydrogen Intercalation into Graphite Nanofibers. Jetp Lett. 114, 337–340 (2021). https://doi.org/10.1134/S0021364021180107

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364021180107

Navigation