Skip to main content
Log in

Fergusonite–Scheelite Phase Transition of Praseodymium Orthoniobate

  • Published:
Inorganic Materials Aims and scope

Abstract—

Polycrystalline praseodymium orthoniobate, PrNbO4, has been studied by high-temperature X‑ray diffraction and differential scanning calorimetry. We have determined the temperature of the fergusonite–scheelite structural phase transition and shown it to be a second-order transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Li, C., Bayliss, R.D., and Skinner, S.J., Crystal structure and potential interstitial oxide ion conductivity of LnNbO4 and LnNb0.92W0.08O4.04 (Ln = La, Pr, Nd), Solid State Ionics, 2014, vol. 262, pp. 530–535. https://doi.org/10.1016/j.ssi.2013.12.023

    Article  CAS  Google Scholar 

  2. Cao, Y., Duan, N., Yan, D., Chi, B., Pu, J., and Jian, L., Enhanced electrical conductivity of LaNbO4 by A-site substitution, Int. J. Hydrogen Energy, 2016, vol. 41, pp. 20  633–20 639. https://doi.org/10.1016/j.ijhydene.2016.08.056

  3. Haugsrud, R. and Norby, T., Proton conduction in rare-earth ortho-niobates and ortho-tantalates, Nat. Mater., 2006, vol. 5, pp. 193–196. https://doi.org/10.1038/nmat1591

    Article  CAS  Google Scholar 

  4. Magrasó, A., Fontaine, M.-L., Bredesen, R., Haugsrud, R., and Norby, T., Cathode compatibility, operation, and stability of LaNbO4-based proton conducting fuel cells, Solid State Ionics, 2014, vol. 262, pp. 382–387. https://doi.org/10.1016/j.ssi.2013.12.009

    Article  CAS  Google Scholar 

  5. Balamurugan, C., Lee, D.-W., and Subramania, A., Preparation and LPG-gas sensing characteristics of p‑type semiconducting LaNbO4 ceramic material, Appl. Surf. Sci., 2013, vol. 283, pp. 58–64. https://doi.org/10.1016/j.apsusc.2013.06.013

    Article  CAS  Google Scholar 

  6. Dzierzgowski, K., Wachowski, S., Gojtowska, W., Lewandowska, I., Jasiński, P., Gazda, M., and Mielewczyk-Gryń, A., Praseodymium substituted lanthanum orthoniobate: electrical and structural properties, Ceram. Int., 2018, vol. 44, no. 7, pp. 8210–8215. https://doi.org/10.1016/j.ceramint.2018.01.270

    Article  CAS  Google Scholar 

  7. Rooksby, H.P. and White, E.A.D., The structures of 1 : 1 compounds of rare earth oxides with niobia and tantala, Acta Crystallogr., 1963, vol. 16, pp. 888–890. https://doi.org/10.1107/S0365110X63002395

    Article  CAS  Google Scholar 

  8. Sarin, P., Hughes, R.W., Lowry, D.R., Apostolov, Z.D., and Kriven, W.M., High-temperature properties and ferroelastic phase transitions in rare-earth niobates (LnNbO4), J. Am. Ceram. Soc., 2014, vol. 97, pp. 3307–3319. https://doi.org/10.1111/jace.13095

    Article  CAS  Google Scholar 

  9. Jian, L. and Wayman, C., Monoclinic-to-tetragonal phase transformation in a ceramic rare-earth orthoniobate LaNbO4, J. Am. Ceram. Soc., 1997, vol. 80, pp. 803–806. https://doi.org/10.1111/j.1151-2916.1997.tb02905.x

    Article  CAS  Google Scholar 

  10. Kukueva, L.L., Ivanova, L.A., and Venevtsev, Yu.N., Ferroelastics with the fergusonite type structure, Ferroelectrics, 1984, vol. 55, pp. 129–133. https://doi.org/10.1080/00150198408015351

    Article  Google Scholar 

  11. Brixner, L.H., Whitney, J.F., Zumsteg, F.C., and Jones, G.A., Ferroelasticity in the LnNbO4-type rare earth niobates, Mater. Res. Bull., 1977, vol. 12, pp. 17–24. https://doi.org/10.1016/0025-5408(77)90084-8

    Article  CAS  Google Scholar 

  12. Nikiforova, G., Khoroshilov, A., Tyurin, A., Gurevich, V., and Gavrichev, K., Heat capacity and thermodynamic properties of lanthanum orthoniobate, J. Chem. Thermodyn., 2019, vol. 132, pp. 44–53. https://doi.org/10.1016/j.jct.2018.12.041

    Article  CAS  Google Scholar 

  13. Kondrat’eva, O.N., Nikiforova, G.E., Tyurin, A.V., Khoroshilov, A.V., Gurevich, V.M., and Gavrichev, K.S., Thermodynamic properties of, and fergusonite-to-scheelite phase transition in gadolinium orthoniobate GdNbO4 ceramics, J. Alloys Compd., 2019, vol. 779, pp. 660–666. https://doi.org/10.1016/j.jallcom.2018.11.272

    Article  CAS  Google Scholar 

  14. McCarthy, G.J., X-ray studies of RENbO4 compounds, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., 1971, vol. 27, pp. 2285–2286. https://doi.org/10.1107/S0567740871005697

    Article  CAS  Google Scholar 

  15. Knyazev, A.V., Smirnova, N.N., Mączka, M., Knyazeva, S.S., and Letyanina, I.A., Thermodynamic and spectroscopic properties of spinel with the formula Li4/3Ti5/3O4, Thermochim. Acta, 2013, vol. 559, pp. 40–45. https://doi.org/10.1016/j.tca.2013.02.019

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

In this study, we used equipment at the Shared Physical Characterization Facilities Center, Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences.

Funding

This work was supported by the Russian Federation Ministry of Science and Higher Education (state research target for the Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, basic research) and the Russian Foundation for Basic Research (grant no. 18-03-00343).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. E. Nikiforova.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikiforova, G.E., Khoroshilov, A.V., Gavrichev, K.S. et al. Fergusonite–Scheelite Phase Transition of Praseodymium Orthoniobate. Inorg Mater 55, 964–967 (2019). https://doi.org/10.1134/S0020168519090085

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168519090085

Keywords:

Navigation