Skip to main content
Log in

Molecular Dynamics Study of the Evolution of Rotational Atomic Displacements in a Crystal Subjected to Shear Deformation

  • Published:
Physical Mesomechanics Aims and scope Submit manuscript

Abstract

The paper analyzes the redistribution of atomic displacements in an initially defect-free copper crystallite after shear deformation with emphasis on the evolution of dynamic structures formed by self-consistent collective atomic rotations. The analysis is based on an original technique which allows one to identify vortex motion in a vector variable space with a discrete step. The results of research show that the direction of consistent atomic motion in vortex structures varies with time and from vortex to vortex. Such spatial alternation of rotations in the material provides its continuity along the boundaries of vortex structures, and their time-variant direction ensures stress and strain transfer from the bulk of the loaded crystal to its peripheral free boundaries. When the strain goes above its critical value, such redistribution can lead to the formation of structural defects. Thus, the vortex structures formed by elastic atomic displacements can be considered as dynamic defects because they provide a way for internal relaxation in the loaded material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berger, M.A., Introduction to Magnetic Helicity, Plasma Phys. Control. Fusion. B. IOP Publ., 1999, vol. 41, no. 12, pp. 167–175.

    Article  ADS  Google Scholar 

  2. Hasegawa, H., Fujimoto, M., Phan, T.-D., Rume, H., Balogh, A., Dunlop, M.W., Hashimoto, C., and Tandokoro, R., Transport of Solar Wind into Earth’s Magnetosphere through Rolled-up Kelvin-Helmholtz Vortices, Nature, 2004, vol. 430, no. 7001, pp. 755–758.

    Article  ADS  Google Scholar 

  3. Sayanagi, K.M., Dyudina, U.A., Ewald, S.P., Fischer, G., Ingersoll, A.P., Kurth, W.S., Muro, G.D., Porco, C.C., and West, R.A., Dynamics of Saturn’s Great Storm of 2010–2011 from Cassini ISS and RPWS, Icarus., 2013, vol. 223, no. 1, pp. 460–478.

    Article  ADS  Google Scholar 

  4. Filippov, A.E., Simple Model of Dust Medium Evolution, Phys. Lett. A, 1994, vol. 189, no. 5, pp. 361–366.

    Article  ADS  Google Scholar 

  5. Kizner, Z. and Khvoles, R., Two Variations on the Theme of Lamb-Chaplygin: Supersmooth Dipole and Rotating Multipoles, Regul. Chaotic Dyn., 2004, vol. 9, no. 4, pp. 509–518.

    Article  ADS  MathSciNet  Google Scholar 

  6. Proment, D., Onorato, M., and Barenghi, C.F., Vortex Knots in a Bose-Einstein Condensate, Phys. Rev. E, 2012, vol. 85, no. 3, p. 36306.

    Article  ADS  Google Scholar 

  7. Filippov, A.E., Radievsky, A.V., and Zeltser, A.S., Kinetics of Vortex Formation in Superconductors with d-Pairing, Phys. Rev. B, 1996, vol. 54, no. 5, pp. 3504–3507.

    Article  ADS  Google Scholar 

  8. Geim, A.K., Grigorieva, I.V., Dubonos, S.V., Lok, J.G.S., Maan, J.C., Filippov, A.E., and Peeters, F.M., Phase Transitions in Individual Sub-Micrometre Superconductors, Nature, 1997, vol. 390, no. 6657, pp. 259–262.

    Article  ADS  Google Scholar 

  9. Leonov, A.O. and Mostovoy, M., Multiply Periodic States and Isolated Skyrmions in an Anisotropic Frustrated Magnet, Nat. Commun., 2015, no. 6, p. 8275.

  10. Kiselev, N.S., Bogdanov, A.N., Schäfer, R., and Rößler, U.K., Chiral Skyrmions in Thin Magnetic Films: New Objects for Magnetic Storage Technologies? J. Phys. D. Appl. Phys., 2011, vol. 44, no. 39, p. 392001.

    Article  Google Scholar 

  11. Filippov, A.E., Kinetics of Vortex Structure Formation in Magnetic Materials, J. Exp. Theor. Phys., 1997, vol. 84, no. 5, pp. 971–977.

    Article  ADS  Google Scholar 

  12. Frank, F.C., LXXXIII, Crystal Dislocations.—Elementary Concepts and Definitions, Philos. Mag., 1951, vol. 42, no. 331, pp. 809–819.

    Article  MathSciNet  Google Scholar 

  13. Panin, V.E. and Grinyaev, Yu.V., Physical Mesomechanics: a New Paradigm at the Interface of Solid State Physics and Solid Mechanics, Phys. Mesomech., 2003, vol. 6, no. 4, pp. 7–32.

    Google Scholar 

  14. Surface Layers and Internal Interfaces in Heterogeneous Materials, Panin, V.E., Ed., Novosibirsk: Izd-vo SO RAN, 2006, pp. 32–69.

    Google Scholar 

  15. Egorushkin, V.E. and Panin, V.E., Scale Invariance of Plastic Deformation of the Planar and Crystal Subsystems of Solids under Superplastic Conditions, Phys. Mesomech., 2017, vol. 20, no. 1, pp. 1–9. doi https://doi.org/10.1134/S1029959917010015

    Article  Google Scholar 

  16. Panin, V.E., Egorushkin, V.E., Panin, A.V., and Chernyavskii, A.G., Plastic Distortion as a Fundamental Mechanism in Nonlinear Mesomechanics of Plastic Deformation and Fracture, Phys. Mesomech., 2016, vol. 19, no. 3, pp. 255–268.

    Article  Google Scholar 

  17. Psakhie, S.G., Zolnikov, K.P., Dmitriev, A.I., Smolin, A.Yu., and Shilko, E.V., Dynamic Vortex Defects in Deformed Material, Phys. Mesomech., 2014, vol. 17, no. 1, pp. 15–22.

    Article  Google Scholar 

  18. Zhang, Z., He, G., Zhang, H., and Eckert, J., Rotation Mechanism of Shear Fracture Induced by High Plasticity in Ti-Based Nano-Structured Composites Containing Ductile Dendrites, Scripta Mater., 2005, vol. 52, no. 9, pp. 945–949.

    Article  Google Scholar 

  19. Ovid’ko, I.A. and Sheinerman, A.G., Special Rotational Deformation in Nanocrystalline Metals and Ceramics, Scripta Mater., 2008, vol. 59, no. 1, pp. 119–122.

    Article  Google Scholar 

  20. Morozov, N.F., Ovid’ko, I.A., Sheinerman, A.G., and Aifantis, E.C., Special Rotational Deformation as a Toughening Mechanism in Nanocrystalline Solids, J. Mech. Phys. Solids, 2010, vol. 58, pp. 1088–1099.

    Article  ADS  Google Scholar 

  21. Gutkin, M.Y., Ovid’ko, I.A., and Skiba, N.V., Crossover from Grain Boundary Sliding to Rotational Deformation in Nanocrystalline Materials, Acta Mater., 2003, vol. 51, pp. 4059–4071.

    Article  Google Scholar 

  22. Feng, H., Fang, Q.H., Zhang, L.C., and Liu, Y.W., Special Rotational Deformation and Grain Size Effect on Fracture Toughness of Nanocrystalline Materials, Int. J. Plasticity, 2013, vol. 42, pp. 50–64.

    Article  Google Scholar 

  23. Ovid’ko, I.A. and Sheinerman, A.G., Nanoscale Rotational Deformation in Solids at High Stresses, Appl. Phys. Lett., 2011, vol. 98, p. 181909.

    Article  ADS  Google Scholar 

  24. Ovid’ko, I.A. and Sheinerman, A.G., Nanoscale Rotational Deformation near Crack Tips in Nanocrystalline Solids, J. Phys. D. Appl. Phys., 2012, vol. 45, p. 335301.

    Article  Google Scholar 

  25. Psakhie, S.G., Shilko, E.V., Popov, M.V., and Popov, V.L., The Key Role of Elastic Vortices in the Initiation of Intersonic Shear Cracks, Phys. Rev. E, 2015, vol. 91, p. 063302.

    Article  ADS  Google Scholar 

  26. Psakhie, S.G., Zolnikov, K.P., Dmitriev, A.I., Kryzhevich, D.S., and Nikonov, A.Yu., Local Structural Transformations in the FCC Lattice in Various Contact Interaction. Molecular Dynamics Study, Phys. Mesomech., 2012, vol. 15, no. 3–4, pp. 147–154.

    Article  Google Scholar 

  27. Dmitriev, A.I., Nikonov, A.Yu., Filippov, A.E., and Popov, V.L., Identification and Space-Time Evolution of Vortex-Like Motion of Atoms in a Loaded Solid, Phys. Mesomech., 2018, vol. 21, no. 5, pp. 419–429. doi https://doi.org/10.1134/S1029959918050065

    Article  Google Scholar 

  28. Plimpton, S., Fast Parallel Algorithms for Short-Range Molecular Dynamics, J. Comput. Phys., 1995, vol. 117, no. 1, pp. 1–19.

    Article  ADS  Google Scholar 

  29. Mishin, Y., Mehl, M.J., Papaconstantopoulos, D.A., Voter, A.F., and Kress, J.D., Structural Stability and Lattice Defects in Copper: Ab Initio, Tight-Binding, and Embedded-Atom Calculations, Phys. Rev. B, 2001, vol. 63, no. 22, p. 224106.

    Article  ADS  Google Scholar 

  30. Stukowski, A., Visualization and Analysis of Atomistic Simulation Data with OVITO—the Open Visualization Tool, Model. Simul. Mater. Sci. Eng., 2010, vol. 18, no. 1, p. 15012.

    Article  ADS  Google Scholar 

Download references

Funding

The work was supported by Fundamental Research Program of the State Academies of Sciences for 2013–2020 (project No. III.23.2.4 project). The results related to lattice defect formation due to elastic stress redistribution were obtained under Russian Science Foundation grant No. 17-19-01374. The molecular dynamics simulation was performed on a Skif Cyberia supercomputer under Competitiveness Enhancement Program of Tomsk State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Dmitriev.

Additional information

Russian Text © The Author(s), 2019, published in Fizicheskaya Mezomekhanika, 2019, Vol. 22, No. 3, pp. 36–43.

Deceased.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dmitriev, A.I., Nikonov, A.Y., Filippov, A.E. et al. Molecular Dynamics Study of the Evolution of Rotational Atomic Displacements in a Crystal Subjected to Shear Deformation. Phys Mesomech 22, 375–381 (2019). https://doi.org/10.1134/S1029959919050047

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1029959919050047

Keywords

Navigation