Skip to main content
Log in

Effect of atomic parameters on determination of aluminium abundance in atmospheres of late-type stars

  • Published:
Astrophysical Bulletin Aims and scope Submit manuscript

Abstract

We study the effect of the photoionization cross sections for the ground state of Al I on the inferred aluminium abundance in stellar atmospheres. We match the theoretical and observed line profiles of the resonance λλ 3944.01, 3961.52 Å and subordinate λλ 6696.03, 6698.68 Å doublets in high-resolution spectra of the metal-poor solar-type stars HD22879 and HD201889. We determine the parameters of these stars from their photometric and spectroscopic data. Our computations show that the profiles can be matched and a single aluminium abundance inferred simultaneously from both groups of spectral lines only with low photoionization cross sections (about 10–12 Mb). Larger cross sections (about 58–65 Mb) make such fits impossible. We therefore conclude that small photoionization cross sections should be preferred for the determination of aluminium abundances in metal-poor stars. We redetermine the aluminium abundances in the atmospheres of halo stars. The resulting abundances prove to be lower by 0.1–0.15 dex than our earlier determinations which does not affect the conclusions based on our earlier estimates. In particular, the NLTE [Al/Fe]-[Fe/H] dependence, on the whole, agrees only qualitatively with the results of theoretical predictions. Therefore further refinement of the theory of nuclear synthesis of aluminium in the process of the chemical evolution of the Galaxy remains a task of current importance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. J. Seaton, C. J. Zeippen, J. A. Tully, et al., Revista Mexicana Astronom. Astrofís. 23, 19 (1992).

    ADS  Google Scholar 

  2. L. I. Mashonkina, V. V. Shimanskii, and N. A. Sakhibullin, Astronomy Reports 44, 790 (2000).

    Article  ADS  Google Scholar 

  3. D. V. Ivanova and V. V. Shimanskii, Astronomy Reports 44, 376 (2000).

    Article  ADS  Google Scholar 

  4. J. R. Shi, T. Gehren, L. Mashonkina, and G. Zhao, Astronom. and Astrophys. 503, 533 (2009).

    Article  ADS  Google Scholar 

  5. T. Gehren, C. Reile, and W. Steenbock, in Proc. NATO Advanced Research Workshop on Problems of Stellar Atmospheres: Beyond Classical Models, Ed. by L. Crivellari, I. Hubeny, and D. Hummer (Kluwer, Dordrecht, 1991), p. 387.

  6. D. Baumuller and T. Gehren, Astronom. and Astrophys. 307, 961 (1996).

    ADS  Google Scholar 

  7. D. Baumuller and T. Gehren, Astronom. and Astrophys. 325, 1088 (1997).

    ADS  Google Scholar 

  8. V. S. Menzhevitski, V. V. Shimansky, and N. N. Shimanskaya, Astrophysical Bulletin 67, 294 (2012).

    Article  ADS  Google Scholar 

  9. D. Hofsaess, Atomic Data and Nuclear Data Tables 24, 285 (1979).

    Article  ADS  Google Scholar 

  10. D. G. Yakovlev, L. M. Band, M. B. Trzhaskovskaya, and D. A. Verner, Astronom. and Astrophys. 237, 267 (1990).

    ADS  Google Scholar 

  11. V. S. Menzhevitski, N. N. Shimanskaya, V. V. Shimansky, and N. A. Sakhibullin, Astrophysical Bulletin 68, 243 (2013).

    Article  Google Scholar 

  12. Butler K. (private communication).

  13. J. L. Kohl and W. H. Parkinson, Astrophys. J. 184, 641 (1973).

    Article  ADS  Google Scholar 

  14. V. Panchuk, V. Klochkova, M. Yushkin, and I. Najdenov, J. Optical Technology 76, 87 (2009).

    Article  Google Scholar 

  15. N. E. Piskunov and J. A. Valenti, Astronom. and Astrophys. 385 1095 (2002).

  16. E. Hog, C. Fabricius, V. V. Makarov, et al., Astronom. and Astrophys. 355, L.27 (2000).

    ADS  Google Scholar 

  17. R. M. Cutri, M. F. Skrutskie, S. Van Dik, et al., 2MASS All Sky Catalog of Point Sources (2003).

    Google Scholar 

  18. R. L. Kurucz, SAO CD-Roms (Smithsonian Astrophysical Observatory, Cambridge, 1994).

    Google Scholar 

  19. F. Van Leeuwen, Astronom. and Astrophys. 474, 653 (2007).

    Article  ADS  Google Scholar 

  20. L. Girardi, A. Bressan, G. Bertelli, et al., Astronom. and Astrophys. Suppl. 141, 371 (2000).

    Article  ADS  Google Scholar 

  21. V. V. Shimansky, I. F. Bikmaev, A. I. Galeev, et al., Astronomy Reports 47, 750 (2003).

    Article  ADS  Google Scholar 

  22. V. V. Shimansky, N. V. Borisov, and N. N. Shimanskaya, Astronomy Reports 47, 763 (2003).

    Article  ADS  Google Scholar 

  23. F. Castelli and R. L. Kurucz, IAU Symp., No. 210, A20 (2003).

    Google Scholar 

  24. V. F. Suleymanov, Pis’ma Astronom. Zh. 22, 107 (1996).

    ADS  Google Scholar 

  25. V. F. Suleymanov, Astron. Astrophys. Transactions 2, 197 (1992).

    Article  ADS  Google Scholar 

  26. N. A. Sakhibullin and V. V. Shimanskii, Astronomy Reports 40, 723 (1997).

    ADS  Google Scholar 

  27. S. E. Nersisyan, A. V. Shavrina, A. A. Yaremchuk, Astrophysics 30, 147 (1989).

    Article  ADS  Google Scholar 

  28. N. N. Shimanskaya, I. F. Bikmaev, and V. V. Shimansky, Astrophysical Bulletin 66, 332 (2011).

    Article  ADS  Google Scholar 

  29. C. R. Vidal, J. Cooper, and E. W. Smith, Astronom. and Astrophys. Suppl. 25, 37 (1973).

    Article  ADS  Google Scholar 

  30. H. R. Griem, Astrophys. J. 132, 883 (1960).

    Article  ADS  Google Scholar 

  31. R. L. Kurucz and I. Furenlid, Special Report No. 387 (Smithsonian Astrophysical Observatory, Cambridge, 1979).

    Google Scholar 

  32. A. Unsold, Physik der Sternatmospheren, (Springer, Berlin-Gottingen-Heidelberg, 1955).

    Book  Google Scholar 

  33. D. V. Ivanova, N. A. Sakhibullin, and V. V. Shimanskii, Astronomy Reports 46, 390 (2002).

    Article  ADS  Google Scholar 

  34. V. V. Shimansky, S. A. Pozdnyakova, N. V. Borisov, et al., Astronomy Letters 34, 423 (2008).

    Article  ADS  Google Scholar 

  35. N. N. Shimanskaya, L. I. Mashonkina, and N. A. Sakhibullin, Astronomy Reports 44, 530 (2000).

    Article  ADS  Google Scholar 

  36. V. V. Shimanskii, Astronomy Reports 46, 127 (2002).

    Article  ADS  Google Scholar 

  37. N. Grevesse and A. J. Sauval, Space Sci. Rev. 85, 161 (1998).

    Article  ADS  Google Scholar 

  38. R. Cayrel, E. Depagne, M. Spite, et al., Astronom. and Astrophys. 416 1117 (2004).

  39. M. Samland, Astrophys. J. 496, 155 (1998).

    Article  ADS  Google Scholar 

  40. S. E. Woosley and T. A. Weaver, Astronom. and Astrophys. Suppl. 101, 181 (1995).

    Article  ADS  Google Scholar 

  41. C. Kobayashi, H. Umeda, K. Nomoto, et al., Astrophys. J. 653, 1145 (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Menzhevitski.

Additional information

Original Russian Text © V.S. Menzhevitski, N.N. Shimanskaya, V.V. Shimansky, D.O. Kudryavtsev, 2014, published in Astrofizicheskij Byulleten, 2014, Vol. 69, No. 2, pp. 180–189.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Menzhevitski, V.S., Shimanskaya, N.N., Shimansky, V.V. et al. Effect of atomic parameters on determination of aluminium abundance in atmospheres of late-type stars. Astrophys. Bull. 69, 169–178 (2014). https://doi.org/10.1134/S1990341314020047

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990341314020047

Key words

Navigation