Skip to main content
Log in

Observational restrictions on sodium and aluminium abundance variations in evolution of the galaxy

  • Published:
Astrophysical Bulletin Aims and scope Submit manuscript

Abstract

In this paper we construct and analyze the uniform non-LTE distributions of the aluminium ([Al/Fe]-[Fe/H]) and sodium ([Na/Fe]-[Fe/H]) abundances in the sample of 160 stars of the disk and halo of our Galaxy with metallicities within −4.07 ≤ [Fe/H] ≤ 0.28. The values of metallicity [Fe/H] and microturbulence velocity ξ turb indices are determined from the equivalent widths of the Fe II and Fe I lines. We estimated the sodium and aluminium abundances using a 21-level model of the Na I atom and a 39-level model of the Al I atom. The resulting LTE distributions of [Na/Fe]-[Fe/H] and [Al/Fe]-[Fe/H] do not correspond to the theoretical predictions of their evolution, suggesting that a non-LTE approach has to be applied to determine the abundances of these elements. The account of non-LTE corrections reduces by 0.05–0.15 dex the abundances of sodium, determined from the subordinate lines in the stars of the disk with [Fe/H] ≥ −2.0, and by 0.05–0.70 dex (with a strong dependence on metallicity) the abundances of [Na/Fe], determined by the resonance lines in the stars of the halo with [Fe/H] ≤ −2.0. The non-LTE corrections of the aluminium abundances are strictly positive and increase from 0.0–0.1 dex for the stars of the thin disk (−0.7 ≤ [Fe/H] ≤ 0.28) to 0.03–0.3 dex for the stars of the thick disk (−1.5 ≤ [Fe/H] ≤ −0.7) and 0.06–1.2 dex for the stars of the halo ([Fe/H] ≤ −2.0). The resulting non-LTE abundances of [Na/Fe] reveal a scatter of individual values up to Δ[Na/Fe] = 0.4 dex for the stars of close metallicities. The observed non-LTE distribution of [Na/Fe]-[Fe/H] within 0.15 dex coincides with the theoretical distributions of Samland and Kobayashi et al. The non-LTE aluminium abundances are characterized by a weak scatter of values (up to Δ[Al/Fe] = 0.2 dex) for the stars of all metallicities. The constructed non-LTE distribution of [Al/Fe]-[Fe/H] is in a satisfactory agreement to 0.2 dex with the theoretical data of Kobayashi et al., but strongly differs (up to 0.4 dex) from the predictions of Samland.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. X. Timmes, S. E. Woosley, and T. A. Weaver, Astrophys. J. Suppl. 98, 617 (1995).

    Article  ADS  Google Scholar 

  2. M. Samland, Astrophys. J. 496, 155 (1998).

    Article  ADS  Google Scholar 

  3. A. Alibes, J. Labay, and R. Canal, Astronom. and Astrophys. 370, 1103 (2001).

    Article  ADS  Google Scholar 

  4. C. Kobayashi, H. Umeda, K. Nomoto, et al, Astrophys. J. 653, 1145 (2006).

    Article  ADS  Google Scholar 

  5. P. A. Denisenkov and S. N. Denisenkova, Sov. Astron. Lett. 16, 275 (1990).

    ADS  Google Scholar 

  6. A. Goswami and N. Prantzos, Astronom. and Astrophys. 359, 191 (2000).

    ADS  Google Scholar 

  7. S. E. Woosley and T. A. Weaver, Astrophys. J. Suppl. 101, 181 (1995).

    Article  ADS  Google Scholar 

  8. J. H. Bruls, R. J. Rutten, and N. Shchukina, Astronom. and Astrophys. 265, 237 (1992).

    ADS  Google Scholar 

  9. L. I. Mashonkina, N. A. Sakhibullin, and V. V. Shimanskii, Astronomy Reports 37, 192 (1993).

    ADS  Google Scholar 

  10. L. I. Mashonkina, V. V. Shimanskii, and N. A. Sakhibullin, Astronomy Reports 44, 790 (2000).

    Article  ADS  Google Scholar 

  11. K. Lind, M. Asplund, P. S. Barklem, and A. K. Belyaev, Astronom. and Astrophys. 528, 103 (2004).

    Article  Google Scholar 

  12. Y. Takeda, Publ. Astronom. Soc. Japan 47, 463 (1985).

    ADS  Google Scholar 

  13. D. Baumuller, K. Butler, and T. Gehren, Astronom. and Astrophys. 338, 637 (1998).

    ADS  Google Scholar 

  14. Y. Takeda, G. Zhao, M. Takada-Hidai, et al., Astronom. and Astrophys. 3, 316 (2003).

    Google Scholar 

  15. J. R. Shi, T. Gehren, and G. Zhao, Astronom. and Astrophys. 423, 683 (2004).

    Article  ADS  Google Scholar 

  16. T. Gehren, Y.C. Liang, J. R. Shi, et al., Astronom. and Astrophys. 413, 104 (2004).

    Article  Google Scholar 

  17. S. M. Andrievsky, M. Spite, S. A. Korotin, et al., Astronom. and Astrophys. 464, 1081 (2007).

    Article  ADS  Google Scholar 

  18. Y. Takeda, D. Kang, I. Han, et al., Publ. Astronom. Soc. Japan 61, 1365 (2009).

    Google Scholar 

  19. T. Gehren, C. Reile, and W. Steenbock, in Proc. of Advanced Research Workshop, Stellar Atmospheres: Beyond Classical Models (Kluwer, Dordrecht, 1991), p. 387.

    Book  Google Scholar 

  20. D. Baumuller and T. Gehren, Astronom. and Astrophys. 307, 961 (1996).

    ADS  Google Scholar 

  21. V. S. Menzhevitski, V. V. Shimansky, and N. N. Shimanskaya, Proceedings of the Kazan State University 153, 95 (2010).

    Google Scholar 

  22. V. S. Menzhevitski, V. V. Shimansky, and N. N. Shimanskaya, Astrophysical Bulletin 67, 294 (2012).

    Article  ADS  Google Scholar 

  23. I. F. Bikmaev, T. A. Ryabchikova, H. Brunt, et al., Astronom. and Astrophys. 389, 537 (2002).

    Article  ADS  Google Scholar 

  24. P. J. D. Mauas, R. F. Borda, and M. L. Luoni, Astrophys. J. Suppl. 142, 285 (2002).

    Article  ADS  Google Scholar 

  25. L. Mashonkina, L. Zhao, T. Gehren, et al., Astronom. and Astrophys. 478, 529 (2008).

    Article  ADS  Google Scholar 

  26. M. J. Seaton, C. J. Zeippen, J. A. Tully, et al., Rev. Mex. Astron. Astrofis. 23, 19 (1992).

    ADS  Google Scholar 

  27. J. L. Kohl and W. H. Parkinson, Astrophys. J. 184, 641 (1973).

    Article  ADS  Google Scholar 

  28. A. I. Galeev, I. F. Bikmaev, L. I. Mashonkina, et al., Astronomy Reports 48, 511 (2004).

    Article  ADS  Google Scholar 

  29. V. V. Shimansky, I. F. Bikmaev, A. I. Galeev, et al., Astronomy Reports 47, 750 (2003).

    Article  ADS  Google Scholar 

  30. F. A. Musaev, Astronomy Letters 22, 715 (1996).

    ADS  Google Scholar 

  31. J. Tomkin, B. Edvardsson, D. L. Lambert, and B. Gustafsson, Astronom. and Astrophys. 327, 587 (1997).

    ADS  Google Scholar 

  32. G. P. Di Benedetto, Astronom. and Astrophys. 339, 858 (1998).

    ADS  Google Scholar 

  33. A. Alonso, S. Arribas, and C. Martinez-Roger, Astronom. and Astrophys. 313, 873 (1996).

    ADS  Google Scholar 

  34. F. van Leeuwen, Astronom. and Astrophys. 474, 653 (2007).

    Article  ADS  Google Scholar 

  35. R. Carrera and E. Pancino, Astronom. and Astrophys. 535, 30 (2011).

    Article  ADS  Google Scholar 

  36. K. Jonsell, B. Edvardsson, B. Gustafsson, et al., Astronom. and Astrophys. 440, 321 (2005).

    Article  ADS  Google Scholar 

  37. A. Alves-Brito, J. Melendez, M. Asplund, et al., Astronom. and Astrophys. 513, 70 (2010).

    Article  Google Scholar 

  38. R. Cayrel, E. Depagne, M. Spite, et al., Astronom. and Astrophys.

  39. B. Edvardsson, J. Andersen, B. Gustafsson, et al., Astronom. and Astrophys. 275, 101 (1993).

    ADS  Google Scholar 

  40. J. P. Fulbricht, Astronom. J. 120, 1841 (2000).

    Article  ADS  Google Scholar 

  41. R. L. Kurucz, I. Furenlid, J. Brault, and L. Testerman, in Solar Flux Atlas from296 to 1300nm (NewMexico, 1984).

    Google Scholar 

  42. N. Grevesse, A. Noels, and A. J. Sauval, ASP Conf. Ser. 99, 117 (1996).

    ADS  Google Scholar 

  43. R. L. Kurucz, SAO CD-Roms. (MA02138, Cambridge, 1994).

    Google Scholar 

  44. L. H. Auer and J. Heasley, Astrophys. J. 205, 165 (1976).

    Article  ADS  Google Scholar 

  45. N. A. Sakhibullin, Trudi Kazansk. Gor. Astron. Obs. 48, 9 (1983).

    ADS  Google Scholar 

  46. S. E. Nersisyan, A. V. Shavrina, and A. A. Yaremchuk, Astrophysics 30, 147 (1989).

    Article  ADS  Google Scholar 

  47. N. N. Shimanskaya, I. F. Bikmaev, and V. V. Shimansky, Astrophysical Bulletin 66, 332 (2011).

    Article  ADS  Google Scholar 

  48. F. Castelli and R. L. Kurucz, IAUS 210, A20 (2003).

    Google Scholar 

  49. N. Grevesse and A. J. Sauval, Space Sci. Rev. 85, 161 (1998).

    Article  ADS  Google Scholar 

  50. J.G. Cohen, W. Huang, and E.N. Kirby, Astrophys. J. 114, 1030 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Menzhevitski.

Additional information

Original Russian Text © V.S. Menzhevitski, N.N. Shimanskaya, V.V. Shimansky, N.A. Sakhibullin, 2013, published in Astrofizicheskii Byulleten, 2013, Vol. 68, No. 3, pp. 302–317.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Menzhevitski, V.S., Shimanskaya, N.N., Shimansky, V.V. et al. Observational restrictions on sodium and aluminium abundance variations in evolution of the galaxy. Astrophys. Bull. 68, 285–299 (2013). https://doi.org/10.1134/S199034131303005X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199034131303005X

Keywords

Navigation