Skip to main content
Log in

Effect of temperature and magnetic field on the evolution of a vortex structure of the granular YBa2Cu3O7 − δ high-temperature superconductor

  • Superconductivity
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The temperature dependences of the electrical resistivity ρ(T) H = const have been measured in external magnetic fields H ext (0 ≤ H ext ≤ 1420 Oe) at temperatures ranging from 70 to 273 K for samples of the granular YBa2Cu3O7 − δ high-temperature superconductor (HTSC). Cooling of the samples to the minimum temperature T min (70 K) has been performed in external magnetic fields (FC mode) and in the absence of a magnetic field (ZFC mode). Moreover, the dependences ρ(T) H = 0 for samples cooled in the FC mode have been measured in a zero field. The curves ρ(T)H = const have been converted into isotherms of the magnetore-sistance ρ(H ext) T = const. A comparative analysis of the specific features in the behavior of the curves ρ(H) T = const for samples with different “magnetic prehistories” has made it possible to elucidate the nature and mechanisms of the influence of the particular scenario of the magnetic treatment of granular HTSCs on the behavior of their galvanomagnetic properties. The temperature dependences of the critical magnetic fields of superconducting grains (H c1g , H c2g ) and Josephson weak links (H c2J ) have been determined, and the H-T phase diagrams of granular YBa2Cu3O7 − δ HTSCs have been recovered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. V. Shubnikov, V. I. Khotkevich, Yu. D. Shepelev, and Yu. N. Ryabinin, Zh. Eksp. Teor. Fiz. 7(2), 221 (1935).

    Google Scholar 

  2. M. Tinkham and C. J. Lobb, Solid State Phys. 42, 91 (1989); L. Ji, M. S. Rzchowski, N. Anand, and M. Tinkham, Phys. Rev. B: Condens. Matter 47, 470 (1993).

    Google Scholar 

  3. C. A. M. dos Santos, C. J. V. Oliveira, M. S. da Luz, A. D. Bortolozo, M. J. R. Sandim, and A. J. S. Machado, Phys. Rev. B: Condens. Matter 74, 184526 (2006).

    Article  ADS  Google Scholar 

  4. V. V. Derevyanko, T. V. Sukhareva, and V. A. Finkel’, Phys. Solid State 46(10), 1798 (2004).

    Article  ADS  Google Scholar 

  5. V. V. Derevyanko, T. V. Sukhareva, and V. A. Finkel, Tech. Phys. 53(3), 321 (2008).

    Article  Google Scholar 

  6. T. V. Sukhareva and V. A. Finkel, J. Exp. Theor. Phys. 107(5), 787 (2008).

    Article  ADS  Google Scholar 

  7. D. A. Balaev, A. A. Bykov, S. A. Semenov, S. I. Popkov, A. A. Dubrovskii, K. A. Shaikhutdinov, and M. I. Petrov, Phys. Solid State 53(5), 922 (2011); D. A. Balaev, A. A. Dubrovskii, K. A. Shaikhutdinov, S. I. Popkov, D. M. Gokhfeld, Yu. S. Gokhfeld, and M. I. Petrov, J. Exp. Theor. Phys. 108 (2), 241 (2009).

    Article  ADS  Google Scholar 

  8. C. A. M. dos Santos, M. S. da Luz, B. Ferreira, and A. J. S. Machado, Physica C (Amsterdam) 391, 345 (2003).

    Article  ADS  Google Scholar 

  9. M. S. da Luz, C. A. M. dos Santos, M. J. R. Sandim, A. J. S. Machado, and R. F. Jardim, Braz. J. Phys. 37, 1155 (2007).

    Article  ADS  Google Scholar 

  10. K. Kiliç, A. Kiliç, H. Yetiş, and O. Çetin, Phys. Rev. B: Condens. Matter 68, 144513 (2003); K. Kiliç, A. Kiliç, H. Yeti, and O. Çetin, J. Appl. Phys. 95, 1924 (2004); K. Kiliç, A. Kiliç, H. Yetiş, and O. Çetin, New J. Phys. 7, 212 (2005).

    Article  ADS  Google Scholar 

  11. L. Burlachkov, E. Mogilko, Y. Schlesinger, Y. M. Strelniker, and S. Havlin, Phys. Rev. B: Condens. Matter 67, 104599 (2003).

    Article  ADS  Google Scholar 

  12. D. Daghero, P. Mazzett, A. Stepanescu, P. Tura, and A. Masoero, Phys. Rev. B: Condens. Matter 66, 184514 (2002).

    Article  ADS  Google Scholar 

  13. P. Mazzetti, A. Stepanescu, P. Tura, A. Masoero, and I. Puica, Phys. Rev. B: Condens. Matter 65, 132512 (2002).

    Article  ADS  Google Scholar 

  14. O. V. Gerashchenko, Supercond. Sci. Technol. 16, 690 (2003).

    Article  ADS  Google Scholar 

  15. V. V. Derevyanko, T. V. Sukhareva, and V. A. Finkel, Funct. Mater. 11(4), 710 (2004).

    Google Scholar 

  16. V. V. Derevyanko, T. V. Sukhareva, and V. A. Finkel’, Phys. Solid State 48(8), 1455 (2006).

    Article  ADS  Google Scholar 

  17. V. V. Derevyanko, T. V. Sukhareva, and V. A. Finkel’, Phys. Solid State 49(10), 1829 (2007).

    Article  ADS  Google Scholar 

  18. T. V. Sukhareva and V. A. Finkel’, Phys. Solid State 52(8), 1585 (2010).

    Article  ADS  Google Scholar 

  19. D. A. Balaev, S. I. Popkov, E. I. Sabitova, S. V. Semenov, K. A. Shaykhutdinov, A. V. Shabanov, and M. I. Petrov, J. Appl. Phys. 110, 093918 (2011).

    Article  ADS  Google Scholar 

  20. T. V. Sukhareva, J. Supercond. Novel Magn. 26(5), 2021 (2013).

    Article  Google Scholar 

  21. V. A. Finkel’, V. M. Arzhavitin, A. A. Blinkin, V. V. Derevyanko, and Yu. Yu. Razdovskii, Physica C (Amsterdam) 235–240, 303 (1994).

    Article  Google Scholar 

  22. A. A. Blinkin, V. V. Derevyanko, A. N. Dovbnya, T. V. Sukhareva, V. A. Finkel’, and I. N. Shlyakhov, Phys. Solid State 48(11), 2037 (2006).

    Article  ADS  Google Scholar 

  23. U. De, S. Kalavathi, T. S. Radhakrihman, and G. V. Subba Rao, J. Phys., Colloq. 49(C8), C8–2167 (1988).

    Article  Google Scholar 

  24. T. V. Sukhareva and V. A. Finkel, Funct. Mater. 16(4), 408 (2009).

    Google Scholar 

  25. O. V. Gerashchenko and S. L. Ginzburg, Supercond. Sci. Technol. 18, 332 (2000).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Finkel.

Additional information

Original Russian Text © V.V. Derevyanko, T.V. Sukhareva, V.A. Finkel, Yu.N. Shakhov, 2014, published in Fizika Tverdogo Tela, 2014, Vol. 56, No. 4, pp. 625–633.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Derevyanko, V.V., Sukhareva, T.V., Finkel, V.A. et al. Effect of temperature and magnetic field on the evolution of a vortex structure of the granular YBa2Cu3O7 − δ high-temperature superconductor. Phys. Solid State 56, 649–658 (2014). https://doi.org/10.1134/S1063783414040076

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783414040076

Keywords

Navigation