Skip to main content
Log in

General regularities of magnetoresistive effects in the polycrystalline yttrium and bismuth high-temperature superconductor systems

  • Superconductivity
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The influence of thermomagnetic prehistory on the behavior of a resistive transition R(T) in external magnetic fields of polycrystalline YBa2Cu3O7 and Bi1.8Pb0.3Sr1.9Ca2Cu3O x high-temperature supercon-ductors and the Bi1.8Pb0.3Sr1.9Ca2Cu3O x + Ag texture has been investigated. It has been found that, for YBa2Cu3O7, the thermomagnetic prehistory exerts a substantial influence on the dissipation in the subsystem of grain boundaries in magnetic fields up to ∼103 Oe, and this effect becomes insignificant in fields higher than ∼104 Oe. This behavior has been explained by the influence of magnetic moments of high-temperature superconductor grains on the effective magnetic field in the intergranular medium. For bismuth high-temperature superconductors, no influence of thermomagnetic prehistory on the resistive transition has been observed; however, this effect manifests itself in current-voltage characteristics at high transport current densities. There is also a radical difference in the behavior of isotherms of the magnetoresistance R(H) for the yttrium and bismuth systems. For YBa2Cu3O7, there is a clear separation between the dissipation regimes in the intergranular medium and in grains, which manifests itself even at low transport current densities as a change of sign in the curvature of the dependence R(H). For a texture based on the bismuth high-temperature superconductor, this feature has been observed only at high current densities (comparable to the critical current density at H = 0). This difference in the behavior of magnetoresistive properties of the classical high-temperature superconductor systems under investigation has been explained by relatively low irreversibility fields of the bismuth high-temperature superconductors. In these materials, simultaneous processes of dissipation can occur in an external magnetic field both in the subsystem of grain boundaries between crystallites and in the crystallites themselves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. Dubson, S. T. Herbert, J. J. Calabrese, D. C. Harris, B. R. Patton, and J. C. Garland, Phys. Rev. Lett. 60(11), 1061 (1988).

    Article  ADS  Google Scholar 

  2. V. L. Kozhevnikov, K. R. Krylov, A. I. Ponomarev, M. V. Sadovskii, I. M. Tsidil’kovskii, and S. M. Cheshnitskii, Fiz. Met. Metalloved 64(1), 184 (1987).

    Google Scholar 

  3. Y. J. Quian, Z. M. Tang, K. Y. Chen, B. Zhou, J. W. Qui, B. C. Miao, and Y. M. Cai, Phys. Rev. B: Condens. Matter 39(7), 4701 (1989).

    Article  ADS  Google Scholar 

  4. A. C. Wright, K. Zhang, and A. Erbil, Phys. Rev. B: Condens. Matter 44(2), 863 (1991).

    Article  ADS  Google Scholar 

  5. A. C. Wright, T. K. Xia, and A. Erbil, Phys. Rev. B: Condens. Matter 45(2), 5607 (1992).

    Article  ADS  Google Scholar 

  6. C. Gaffney, H. Petersen, and R. Bednar, Phys. Rev. B: Condens. Matter 48(5), 3388 (1993).

    Article  ADS  Google Scholar 

  7. H. S. Gamchi, G. J. Russel, and K. N. R. Taylor, Phys. Rev. B: Condens. Matter 50(17), 12950 (1994).

    Article  ADS  Google Scholar 

  8. D. N. Kuz’michev, Pis’ma Zh. Eksp. Teor. Fiz. 74(5), 291 (2001) [JETP Lett. 74 (5), 262 (2001)].

    Google Scholar 

  9. I. Felner, E. Galstyan, B. Lorenz, D. Cao, Y. S. Wang, Y. Y. Xue, and C. W. Chu, Phys. Rev. B: Condens. Matter 67, 134506 (2003).

    Article  ADS  Google Scholar 

  10. D. Daghero, P. Mazzetti, A. Stepanesku, P. Tura, and A. Masoero, Phys. Rev. B: Condens. Matter 66, 184514 (2002).

    Article  ADS  Google Scholar 

  11. P. Muné, F. C. Fonseca, R. Muccillo, and R. F. Jardim, Physica C (Amsterdam) 390(4), 363 (2003).

    Article  ADS  Google Scholar 

  12. C. A. M. dos Santos, M. S. da Luz, B. Ferriera, and A. J. S. Machado, Physica C (Amsterdam) 391(4), 345 (2003).

    Article  ADS  Google Scholar 

  13. E. Govea-Alcaide, R. F. Jardim, and P. Muné, Physica C (Amsterdam) 423(3–4), 152 (2005).

    Article  ADS  Google Scholar 

  14. M. R. Mohammadizadeh and M. Akhavan, Supercond. Sci. Technol. 16, 538 (2003).

    Article  ADS  Google Scholar 

  15. A. A. Sukhanov and V. I. Omelchenko, Fiz. Nizk. Temp. (Kharkov) 29(4), 396 (2003) [Low Temp. Phys. 29 (4), 297 (2003)].

    Google Scholar 

  16. A. A. Sukhanov and V. I. Omelchenko, Fiz. Nizk. Temp. (Kharkov) 30(6), 604 (2004) [Low Temp. Phys. 30 (6), 452 (2004)].

    Google Scholar 

  17. V. V. Derevyanko, T. V. Sukhareva, and V. A. Finkel’, Fiz. Tverd. Tela (St. Petersburg) 48(8), 1374 (2006) [Phys. Solid State 48 (8), 1455 (2006)].

    Google Scholar 

  18. C. A. M. dos Santos, C. J. V. Oliveira, M. S. da Luz, A. D. Bortolozo, M. J. R. Jardim, and A. J. S. Machado, Phys. Rev. B: Condens. Matter 74, 184526 (2006).

    Article  ADS  Google Scholar 

  19. G. L. Bhalla and Pratima, Supercond. Sci. Technol. 20, 1120 (2007).

    Article  ADS  Google Scholar 

  20. A. Gupta, A. J. Deshpande, V. P. S. Awana, S. Balamurugan, K. N. Sood, R. Kishore, H. Kishan, E. Takayama-Muromachi, and A. V. Narlikar, Supercond. Sci. Technol. 20, 1084 (2007).

    Article  ADS  Google Scholar 

  21. T. V. Sukhareva and V. A. Finkel’, Fiz. Tverd. Tela (St. Petersburg) 50(6), 961 (2008) [Phys. Solid State 50 (6), 1001 (2008)].

    Google Scholar 

  22. D. A. Balaev, D. M. Gokhfeld, A. A. Dubrovskii, S. I. Popkov, K. A. Shaikhutdinov, and M. I. Petrov, Zh. Eksp. Teor. Fiz. 132(6) 1340 (2007) [JETP 105 (6), 1174 (2007)].

    Google Scholar 

  23. D. A. Balaev, A. A. Dubrovskii, S. I. Popkov, K. A. Shaikhutdinov, and M. I. Petrov, Fiz. Tverd. Tela (St. Petersburg) 50(6), 972 (2008) [Phys. Solid State 50 (6), 1014 (2008)].

    Google Scholar 

  24. D. A. Balaev, A. A. Dubrovskii, K. A. Shaikhutdinov, S. I. Popkov, D. M. Gokhfeld, Yu. S. Gokhfeld, and M. I. Petrov, Zh. Eksp. Teor. Fiz. 135(2), 271 (2009) [JETP 108 (2), 241 (2009)].

    Google Scholar 

  25. T. V. Sukhareva and V. A. Finkel, Zh. Eksp. Teor. Fiz. 134(5), 922 (2008) [JETP 107 (5), 787 (2008)].

    Google Scholar 

  26. L. Urba, C. Acha, and V. Bekeris, Physica C (Amsterdam) 279, 92 (1997).

    Article  Google Scholar 

  27. D. A. Balaev, S. I. Popkov, K. A. Shaikhutdinov, and M. I. Petrov, Fiz. Tverd. Tela (St. Petersburg) 48(5), 780 (2006) [Phys. Solid State 48 (5), 826 (2006)].

    Google Scholar 

  28. D. K. Mani, M. Zouaoui, M. Annabi, F. B. Azzouz, and M. B. Salem, J. Phys.: Conf. Ser. 97, 012182 (2008).

    Article  ADS  Google Scholar 

  29. G. C. Han and C. K. Ong, Phys. Rev. B: Condens. Matter 56(17), 11299 (1997).

    Article  ADS  Google Scholar 

  30. D. G. Marinaro, J. Horvat, S. X. Dou, I. Kusecic, E. Babic, R. Weinstein, and A. Gandini, Supercond. Sci. Technol. 15, 1596 (2002).

    Article  ADS  Google Scholar 

  31. M. Ionescu, B. Winton, T. Silver, S. X. Dou, and R. Ramer, J. Phys. D: Appl. Phys. 37, 1727 (2004).

    Article  ADS  Google Scholar 

  32. B. Winton, M. Ionescu, T. Silver, and S. X. Dou, J. Phys. D: Appl. Phys. 38, 2327 (2005).

    Article  ADS  Google Scholar 

  33. M. Pekala, H. Bougrine, T. Lada, A. Morawski, and M. Ausloos, Supercond. Sci. Technol. 8, 726 (1995).

    Article  ADS  Google Scholar 

  34. K. A. Shaikhutdinov, D. A. Balaev, S. I. Popkov, and M. I. Petrov, Supercond. Sci. Technol. 20(6), 491 (2007).

    Article  ADS  Google Scholar 

  35. M. H. Pu, Z. S. Cao, Q. Y. Wang, and Y. Zhao, Supercond. Sci. Technol. 19, 462 (2006).

    Article  ADS  Google Scholar 

  36. A. V. Pop, R. Deltour, A. H. Harabor, D. Ciurchea, Gh. Ilonca, V. Pop, and M. Todica, Supercond. Sci. Technol. 10, 843 (1997).

    Article  ADS  Google Scholar 

  37. R. K. Nkum and W. R. Datars, Supercond. Sci. Technol. 8, 822 (1995).

    Article  ADS  Google Scholar 

  38. Kh. R. Rostami, Zh. Eksp. Teor. Fiz. 134(4), 716 (2008) [JETP 107 (4), 612 (2008)].

    Google Scholar 

  39. K. A. Shaikhutdinov, D. A. Balaev, S. I. Popkov, and M. I. Petrov, Fiz. Tverd. Tela (St. Petersburg) 51(6), 1046 (2009) [Phys. Solid State 51 (6), 1105 (2009)].

    Google Scholar 

  40. M. I. Petrov, I. L. Belozerova, K. A. Shaikhutdinov, D. A. Balaev, A. A. Dubrovskii, S. I. Popkov, A. D. Vasil’ev, and O. N. Mart’yanov, Supercond. Sci. Technol. 21, 105 019 (2008).

    Google Scholar 

  41. V. S. Kravchenko, M. A. Zhuravleva, E. M. Uskov, P. P. Bezverkhnii, N. A. Bogolyubov, O. G. Potapova, and L. L. Makarshin, Neorg. Mater. 34(10), 1274 (1998) [Inorg. Mater. 34 (10), 1074 (1998)].

    Google Scholar 

  42. A. D. Balaev, Yu. V. Boyarshinov, M. M. Karpenko, and B. P. Khrustalev, Prib. Tekh. Eksp., No. 3, 167 (1985).

  43. D. M. Ginsberg, in Physical Properties of High Temperature Superconductors I, Ed. by D. M. Ginsberg (World Scientific, Singapore, 1989; Mir, Moscow, 1990), p. 69.

    Google Scholar 

  44. E. B. Sonin, Pis’ma Zh. Eksp. Teor. Fiz. 47(8), 415 (1988) [JETP Lett. 47 (8), 496 (1988)].

    ADS  Google Scholar 

  45. M. N. Kunchur and T. R. Askew, J. Appl. Phys. 84(12), 6763 (1998).

    Article  ADS  Google Scholar 

  46. V. V. Val’kov and B. P. Khrustalev, Zh. Eksp. Teor. Fiz. 107(4), 121 (1995) [JETP 80 (4), 680 (1995)].

    Google Scholar 

  47. Y. Xu and M. Suenaga, Phys. Rev. B: Condens. Matter 43(7), 5516 (1991).

    Article  ADS  Google Scholar 

  48. L. F. Cohen and H. J. Jensen, Rep. Prog. Phys. 60, 1581 (1997).

    Article  ADS  Google Scholar 

  49. B. Lehndorff, M. Hortig, and H. Piel, Supercond. Sci. Technol. 11, 1261 (1998).

    Article  ADS  Google Scholar 

  50. G. C. Han, H. M. Han, Z. H. Wang, X. N. Liu, W. F. Yuan, and F. T. Wang, Phys. Rev. B: Condens. Matter 51(18), 12754 (1995).

    Article  ADS  Google Scholar 

  51. J. D. Hettinger, A. D. Swanson, J. C. Brooks, J. Z. Huang, L. Q. Chen, and Zh. Zhao, Supercond. Sci. Technol. 1, 349 (1989).

    Article  ADS  Google Scholar 

  52. J. Roa-Rojas, P. Pureur, L. Mendocca-Ferreira, M. T. D. Orlando, and E. Baggio-Saitovitch, Supercond. Sci. Technol. 14, 898 (2001).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Balaev.

Additional information

Original Russian Text © D.A. Balaev, A.A. Bykov, S.V. Semenov, S.I. Popkov, A.A. Dubrovskii, K.A. Shaikhutdinov, M.I. Petrov, 2011, published in Fizika Tverdogo Tela, 2011, Vol. 53, No. 5, pp. 865–874.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balaev, D.A., Bykov, A.A., Semenov, S.V. et al. General regularities of magnetoresistive effects in the polycrystalline yttrium and bismuth high-temperature superconductor systems. Phys. Solid State 53, 922–932 (2011). https://doi.org/10.1134/S1063783411050052

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783411050052

Keywords

Navigation