Skip to main content
Log in

Role of Collisions with Neutrals in the Process of Modulational Excitation of Dust Acoustic Perturbations in Dusty Ionosphere

  • DUSTY PLASMA
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The role of inelastic collisions of electrons and ions with neutrals during the development of modulational instability involving dust acoustic perturbations in dusty ionospheric plasma, as well as the effect of collisions of electrons, ions, and dust grains with neutrals on the manifestations of modulational interaction in the dusty ionosphere, are estimated. It is shown that, in this case, the influence of collisions of electrons and ions with neutrals is usually less significant than the influence of collisions between dust grains and neutrals. It is demonstrated that the effect of modulational instability on the propagation of electromagnetic waves in the dusty ionospheric plasma is the most significant at altitudes of 100–120 km. The modulational interaction in the dusty ionosphere is important for the explanation of such effects as ground-based observations of low-frequency ionospheric radio noises with frequencies below 50 Hz, generation of infrasonic waves in the ionosphere and the possibility to detect them near the Earth’s surface, enhancement of the green nightglow emission at a wavelength of 557.7 nm from the lower ionosphere layer at altitudes of 110–120 km, and modulational excitation of inhomogeneities in the electron and ion densities in the ionosphere at altitudes of 100–120 km. The absence of observations of low-frequency ionospheric radio noise during such phenomena as noctilucent clouds and polar mesosphere summer echoes caused by the presence of dusty plasma at altitudes of 80–95 km is explained. It is shown that the latter phenomenon is related to the suppression of modulational processes at these altitudes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. P. K. Shukla and A. A. Mamun, Introduction to Dusty Plasma Physics (IOP, Bristol, 2002).

    Book  Google Scholar 

  2. V. N. Tsytovich, G. E. Morfill, S. V. Vladimirov, and H. M. Thomas, Elementary Physics of Complex Plasmas (Springer, Berlin, 2008).

    Book  MATH  Google Scholar 

  3. V. E. Fortov, A. V. Ivlev, S. A. Khrapak, A. G. Khrapak, and G. E. Morfill, Phys. Rep. 421, 1 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  4. R. P. Turco, O. B. Toon, R. C. Whitten, R. G. Keesee, and D. Hollenbach, Planet. Space Sci. 30, 1147 (1982).

    Article  ADS  Google Scholar 

  5. F. Verheest, Waves in Dusty Space Plasmas (Kluwer Academic, London, 2001).

    Google Scholar 

  6. M. J. Buonsanto, J. C. Foster, and D. P. Sipler, J. Geophys. Res. 97, 1225 (1992).

    Article  ADS  Google Scholar 

  7. S. V. Vladimirov, V. N. Tsytovich, S. I. Popel, and F. Kh. Khakimov, Modulational Interactions in Plasmas (Kluwer Academic, Dordrecht, 1995).

    Book  Google Scholar 

  8. S. I. Kopnin, S. I. Popel, and M. Y. Yu, Plasma Phys. Rep. 33, 289 (2007).

    Article  ADS  Google Scholar 

  9. S. I. Kopnin and S. I. Popel, Plasma Phys. Rep. 34, 471 (2008).

    Article  ADS  Google Scholar 

  10. S. I. Kopnin, S. I. Popel, and M. Y. Yu, Phys. Plasmas 16, 063705 (2009).

    Article  ADS  Google Scholar 

  11. S. I. Musatenko, Yu. S. Musatenko, E. V. Kurochka, A. V. Lastochkin, B. Ya. Cholii, O. I. Maksimenko, and A. S. Slipchenko, Geomagn. Aeron. 46, 182 (2006).

    ADS  Google Scholar 

  12. S. I. Kopnin, S. I. Popel, and T. I. Morozova, Plasma Phys. Rep. 41, 171 (2015).

    Article  ADS  Google Scholar 

  13. T. A. Blix, U.-P. Hoppe, and E. V. Thrane, J. Geophys. Res. 108, 8442 (2003).

    Article  Google Scholar 

  14. S. I. Popel, S. I. Kopnin, I. N. Kosarev, and M. Y. Yu, Adv. Space Res. 37, 414 (2006).

    Article  ADS  Google Scholar 

  15. A. V. Gurevich and A. B. Shvartsburg, Nonlinear Theory of Radio Wave Propagation in the Ionosphere (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  16. S. I. Popel, V. N. Tsytovich, and S. V. Vladimirov, Phys. Plasmas 1, 2176 (1994).

    Article  ADS  Google Scholar 

  17. S. I. Popel, Plasma Phys. Rep. 24, 1022 (1998).

    ADS  Google Scholar 

  18. S. I. Kopnin, A. A. Morzhakova, S. I. Popel, and P. K. Shukla, Plasma Phys. Rep. 37, 696 (2011).

    Article  ADS  Google Scholar 

  19. B. A. Klumov, G. E. Morfill, and S. I. Popel, JETP 100, 152 (2005).

    Article  ADS  Google Scholar 

  20. A. Yu. Dubinskii and S. I. Popel, JETP Lett. 96, 21 (2012).

    Article  ADS  Google Scholar 

  21. A. F. Aleksandrov and A. A. Rukhadze, Course of Electrodynamics of Plasmalike Media (Mosk. Gos. Univ., Moscow, 1999) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Popel.

Additional information

Translated by A. Nikol’skii

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borisov, N.D., Kopnin, S.I., Morozova, T.I. et al. Role of Collisions with Neutrals in the Process of Modulational Excitation of Dust Acoustic Perturbations in Dusty Ionosphere. Plasma Phys. Rep. 45, 355–360 (2019). https://doi.org/10.1134/S1063780X19030036

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X19030036

Navigation