Skip to main content
Log in

Processes accompanying the charging of dust grains in the ionospheric plasma

  • Dusty Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The influence of the neutral component of the dusty ionospheric plasma on the process of dust grain charging is analyzed. Microscopic ion fluxes onto a dust grain are calculated with allowance for the interaction with the neutral components of the ionospheric plasma for both negatively and positively charged dust grains. For the latter case, which takes place in the presence of intense UV or X-ray solar radiation, the electron heating caused by the photoelectric effect is also investigated. It is found that the efficiency of electron heating depends on the density of neutral particles. The altitudes at which these effects appreciably influence the charging of different types of nano- and microscale dust grains are determined. It is shown that these effects should be taken into account in describing noctilucent clouds, polar mesosphere summer echoes, and physical phenomena involving grains of meteoric origin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dusty Plasmas: Physics, Chemistry, and Technological Impacts in Plasma Processing, Ed. by A. Bouchoule (Wiley, New York, 1999).

    Google Scholar 

  2. P. K. Shukla and A. Mamun, Introduction to Dusty Plasma Physics (IOP Publishing, Bristol, 2002), p. 265.

    Book  Google Scholar 

  3. S. V. Vladimirov, K. Ostrikov, and A. A. Samarian, Physics and Applications of Complex Plasmas (Imperial College Press, London, 2005), p. 500.

    Book  MATH  Google Scholar 

  4. V. N. Tsytovich, Usp. Fiz. Nauk 167, 57 (1997) [Phys. Usp. 40, 53 (1997)].

    Article  Google Scholar 

  5. V. E. Fortov, A. G. Khrapak, S. A. Khrapak, et al., Usp. Fiz. Nauk 174, 495 (2004) [Phys. Usp. 47, 447 (2004)].

    Article  Google Scholar 

  6. V. E. Fortov, A. V. Ivlev, S. A. Khrapak, et al., Phys. Rep. 421, 1 (2005).

    Article  MathSciNet  ADS  Google Scholar 

  7. A. M. Ignatov, Fiz. Plazmy 31, 52 (2005) [Plasma Phys. Rep. 31, 46 (2005)].

    Google Scholar 

  8. S. I. Popel and A. A. Gisko, Nonlin. Processes Geophys. 13, 223 (2006).

    Article  ADS  Google Scholar 

  9. B. A. Klumov, G. E. Morfill, and S. I. Popel, Zh. Eksp. Teor. Fiz. 127, 171 (2005) [JETP 100, 152 (2005)].

    Google Scholar 

  10. O. Havnes, T. Aslaksen, and A. Brattli, Phys. Scr. T89, 133 (2001).

    Article  ADS  Google Scholar 

  11. S. I. Kopnin, S. I. Popel, and M. Y. Yu, Phys. Plasmas 16, 063705 (2009).

    Article  ADS  Google Scholar 

  12. S. I. Kopnin, I. N. Kosarev, S. I. Popel, and M. Y. Yu, Planet. Space Sci. 52, 1187 (2004).

    Article  ADS  Google Scholar 

  13. R. P. Turco, O. B. Toon, R. C. Whitten, et al., Planet. Space Sci. 30, 1147 (1982).

    Article  ADS  Google Scholar 

  14. K. A. Lynch, L. J. Gelinas, M. C. Kelley, et al., J. Geophys. Res. 110, A03302 (2005).

    Article  Google Scholar 

  15. L. J. Gelinas, K. A. Lynch, and M. Kelley, J. Geophys. Res. 110, A01310 (2005).

    Article  Google Scholar 

  16. D. B. Sobyanin, B. G. Gavrilov, and I. M. Podgorny, Adv. Space Res. 29, 1345 (2002).

    Article  ADS  Google Scholar 

  17. B. G. Gavrilov, I. M. Podgorny, D. B. Sobyanin, et al., J. Spacecr. Rockets 41, 490 (2004).

    Article  ADS  Google Scholar 

  18. S. I. Popel, A. A. Gisko, A. P. Golub’, et al., Phys. Plasmas 7, 2410 (2000).

    Article  ADS  Google Scholar 

  19. B. A. Klumov, S. I. Popel, and R. Bingham, Pis’ma Zh. Eksp. Teor. Fiz. 72, 524 (2000).

    Google Scholar 

  20. A. M. Ignatov, Fiz. Plazmy 35, 704 (2009) [Plasma Phys. Rep. 35, 647 (2009)].

    Google Scholar 

  21. J. S. Chang and J. G. Laframboise, Phys. Fluids 19, 25 (1976).

    Article  ADS  Google Scholar 

  22. L. G. D’yachkov and A. G. Khrapak, J. Phys. A 39, 4561 (2006).

    Article  ADS  MATH  Google Scholar 

  23. C. Y. Johnson, J. Geophys. Res. 71, 330 (1966).

    ADS  Google Scholar 

  24. O. Lie-Svendsen, T. A. Blix, U. Hoppe, et al., J. Geophys. Res. 108, 8442 (2003).

    Article  Google Scholar 

  25. R. S. Stolarski and N. P. Johnson, J. Atmos. Terr. Phys. 34, 1691 (1972).

    Article  ADS  Google Scholar 

  26. I. A. Krinberg, Electron Kinetics in the Earth’s Ionosphere and Plasmasphere (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  27. E. M. Lifshitz and L. P. Pitaevskii, Course of Theoretical Physics, Vol. 10: Physical Kinetics (Fizmatlit, Moscow, 2002; Butterworth-Heinemann, Oxford, 2002).

    Google Scholar 

  28. C. H. Su and S. H. Lam, Phys. Fluids 6, 1479 (1963).

    Article  ADS  Google Scholar 

  29. S. A. Khrapak, G. E. Morfill, A. G. Khrapak, and L. G. D’yachkov, Phys. Plasmas 13, 052114 (2006).

    Article  ADS  Google Scholar 

  30. P. M. Chung, L. Talbot, and K. J. Touryan, Electric Probes in Stationary and Flowing Plasma: Theory and Applications (Springer-Verlag, New York, 1975; Mir, Moscow, 1978).

    Book  Google Scholar 

  31. Handbook of Physical Quantities, Ed. by I. S. Grigoriev and E. Z. Meilikhov (Energoatomizdat, Moscow, 1991; CRC, Boca Raton, 1997).

    Google Scholar 

  32. B. M. Smirnov, Usp. Fiz. Nauk 171, 233 (2001) [Phys. Usp. 44, 221 (2001)].

    Article  Google Scholar 

  33. O. Havnes, U. Angelis, R. Bingham, et al., J. Atmos. Terr. Phys. 52, 637 (1990).

    Article  ADS  Google Scholar 

  34. B. Feuerbacher and B. Fitton, J. App. Phys. 43, 1536 (1972).

    Article  Google Scholar 

  35. B. E. Brunelli and A. A. Namgaladze, Ionosphere Physics (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © S.I. Kopnin, A.A. Morzhakova, S.I. Popel, P.K. Shukla, 2011, published in Fizika Plazmy, 2011, Vol. 37, No. 8, pp. 745–755.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kopnin, S.I., Morzhakova, A.A., Popel, S.I. et al. Processes accompanying the charging of dust grains in the ionospheric plasma. Plasma Phys. Rep. 37, 696–706 (2011). https://doi.org/10.1134/S1063780X11070117

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X11070117

Keywords

Navigation