Skip to main content
Log in

Coordinate detectors based on thin-wall drift tubes

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

Design features and basic parameters of the detectors based on straw trackers are reviewed using the example of the studies and development of trackers in a number of operating and proposed accelerator experimental facilities. The results of methodological studies aimed at qualitatively improving the spatial/time resolution and high rate capability of the detector and enhancing the performance capabilities of such detectors used for particle detection in a high multiplicity environment (and in high-luminosity experiments) are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Charpak, R. Bouclier, T. Bressani, J. Favier, and C. Zupancic, “The use of multiwire proportional counters to select and localize charged particles,” Nucl. Instrum. Methods 62, 262–268 (1968).

    Article  ADS  Google Scholar 

  2. F. Sauli, “Principles of operation of multiwire proportional and drift chambers,” in Experimental Techniques in High-energy Nuclear and Particle Physics, Ed. by T. Ferbel (Addison-Wesley, Menlo Park, 1987), pp. 79–188.

    Google Scholar 

  3. C. Grupen, Particle Detectors (Cambridge Univ. Press, Cambridge, 1996).

    Google Scholar 

  4. J. Benlloch, A. Bressan, M. Capeans, M. Gruwe, M. Hoch, J. C. Labbe, A. Placci, L. Ropelewski, and F. Sauli, “Further developments and beam tests of the gas electron multiplier (GEM),” Nucl. Instrum. Methods Phys. Res., A 419, 410–417 (1998).

    Article  ADS  Google Scholar 

  5. V. A. Budilov, Yu. V. Zapnevskits, Yu. Zlomanchuk, P. D. Maisyukov, A. Navrot, V. A. Nieitin, P. V. Nomokonov, V. D. Peshekhonov, and L. A. Urmanova, “Study of the characteristics of a drift chamber in a beam of slow nuclear fragments,” Instrum. Exp. Tech. 28, 314–318 (1985).

    Google Scholar 

  6. S. D. Pinto (RD51 Collab.), “Micropattern gas detector technologies and applications, the work of the RD51 collaboration,” IEEE Nucl. Sci. Symp. Conf. Rec. 2010, 802–807 (2010).

    Google Scholar 

  7. F. Sauli, “GEM: A new concept for electron amplification in gas detectors,” Nucl. Instrum. Methods Phys. Res., A 386, 531–534 (1997).

    Article  ADS  Google Scholar 

  8. A. F. Buzulutskov, “Radiation detectors based on gas electron multipliers (Review),” Instrum. Exp. Tech. 50, 287–310 (2007).

    Article  Google Scholar 

  9. Y. Giomataris, Ph. Rebourgeard, J. P. Robert, and G. Charpak, “MICROMEGAS: a high-granularity position-sensitive gaseous detector for high particleflux environments,” Nucl. Instrum. Methods Phys. Res., A 376, 29–35 (1996).

    Article  ADS  Google Scholar 

  10. D. Pomarede (ATLAS Collab.), “Detector description of the ATLAS muon spectrometer,” Int. J. Mod. Phys. A 20, 3886–3888 (2005).

    Article  ADS  Google Scholar 

  11. V. N. Bychkov, N. Dedek, W. Dunnweber, M. Faessler, H. Fischer, J. Franz, R. Geyer, Yu. V. Gousakov, A. Grunemaier, F. H. Heinsius, C. Ilgner, I.M. Ivanchenko, G. D. Kekelidze, K. Konigsmann, V. V. Livinski, V. M. Lysan, J. Marzec, D. A. Matveev, S. V. Mishin, V. V. Mialkovski, E. A. Novikov, V. D. Peshekhonov, K. Platzer, M. Sans, Th. Schmidt, V. I. Shokin, A. N. Sissakian, K. S. Viriasov, U. Wiedner, K. Zaremba, I. A. Zhukov, Yu. L. Zlobin, and A. Zvyagin, “The large size straw drift chambers of the COMPASS experiment,” Nucl. Instrum. Methods Phys. Res., A 556, 66–79 (2006).

    Article  ADS  Google Scholar 

  12. P. Abbon, E. Albrecht, V. Yu. Alexakhin, et al. (COMPASS Collab.), “The COMPASS experiment at CERN,” Nucl. Instrum. Methods Phys. Res., A 577, 455–518 (2007).

    Article  ADS  Google Scholar 

  13. E. Abat, T. N. Addy, T. P. A. Akesson, et al. (ATLAS TRT Collab.), “The ATLAS Transition Radiation Tracker (TRT) proportional drift tube: design and performance,” J. Instrum. 3, P02013 (2008).

  14. G. Aad, E. Abat, J. Abdallah, et al. (ATLAS Collab.), “The ATLAS experiment at the CERN Large Hadron Collider,” J. Instrum. 3, S08003 (2008).

  15. Yu. V. Gusakov, N. Grigalashvili, F. Dittus, G. D. Kekelidze, V. M. Lysan, V. V. Myalkovskii, V. D. Peshekhonov, N. A. Rusakovich, A. A. Savenkov, D. Froidevaux, and E. M. Khabarova, “Atlas TRT—Research & design B-type module mass production,” Phys. Part. Nucl. 41, 1–26 (2010).

    Article  Google Scholar 

  16. LHCb Collab., LHCb Reoptimized Detector Design and Performance: Technical Design Report, CERN-LHCC-2003-030 (CERN, Geneva, 2003).

    Google Scholar 

  17. A. Augusto Alves Jr., L. M. Andrade Filho, A. F. Barbosa, et al. (LHCb Collab.), “The LHCb detector at the LHC,” J. Instrum. 3, S08005 (2008).

  18. W. Erni, I. Keshelashvili, B. Krusche, et al. (PANDA Collab.), “Technical design report for the PANDA (AntiProton Annihilations at Darmstadt) straw tube tracker,” Eur. Phys. J. A 49, Article:25 (2013).

  19. P. Wintz and COSY TOF Collab., “A large tracking detector in vacuum consisting of self-supporting straw tubes,” AIP Conf. Proc. 698, 789–792 (2004).

    Article  ADS  Google Scholar 

  20. C. Avanzini, G. Ciapetti, E. De Lucia, F. Lacava, C. Luisi, G. Margutti, A. Nisati, M. Passaseo, L. Pontecorvo, S. Rosati, S. Veneziano, M. Verzocchi, P. Valente, C. Bacci, F. Ceradini, G. Bencivenni, A. Calcaterra, R. de Sangro, P. de Simone, G. Felici, G. Finocchiaro, and M. Piccolo, “Test of a small prototype of the KLOE drift chamber in magnetic field,” Nucl. Instrum. Methods Phys. Res., A 449, 237–247 (2000).

    Article  ADS  Google Scholar 

  21. Y. K. Semertzidis (MECO Collab.), “The MECO experiment at BNL,” Nucl. Phys. B, Proc. Suppl. 149, 372–374 (2005).

    Article  ADS  Google Scholar 

  22. W. Molzon (MECO Collab.), “The MECO experiment to search for lepton flavor violation,” in Proceedings of the International KEK Workshop on Kaon, Muon, and Neutrino Physics and Future, Tsukuba, Japan, 1997, Ed. by Y. Kuno and T. Shinkawa (KEK, Tsukuba, 1998), pp. 195–207.

    Google Scholar 

  23. B. Howell, D. Koltick, and M. Kobayashi, “Crimping: a wire fastening technique in wire chamber construction,” Nucl. Instrum. Methods Phys. Res., A 289, 185–193 (1990).

    Article  ADS  Google Scholar 

  24. V. N. Bytchkov, M. Faessler, R. Geyer, N. M. Gorbacheva, Yu. V. Gousakov, C. Ilgner, I. M. Ivanchenko, G. D. Kekelidze, V. V. Livinski, V. M. Lysan, G. Mallot, D. A. Matveev, S. V. Mishin, E. A. Novikov, V. D. Peshekhonov, V. I. Shokin, A. N. Sissakian, K. S. Viriasov, Yu. L. Zlobin, and A. Zvyagin, “Construction and manufacture of large size straw-chambers of the COMPASS spectrometer tracking system,” Part. Nucl. Lett., 2, 64–73 (2002).

    Google Scholar 

  25. Y. Arai, J. G. Arnold, J. W. Barkell, B. Bevensee, B. Broomer, J. W. Chapman, M. Chiba, T. Collins, M. J. Corden, D. Craig, et al. (SDC Collab.), “A modular straw drift tube tracking system for the Solenoidal Detector Collaboration experiment. Part I. Design,” Nucl. Instrum. Methods Phys. Res., A 381, 355–371 (1996).

    Article  ADS  Google Scholar 

  26. K. Hauviller, L. S. Almaeva, V. N. Bychkov, V.V. Golikov, G. D. Kekelidze, S. P. Lobastov, V. I. Luschikov, and V. D. Peshekhonov, “Radiation hardness of polysulphone and polycarbonate elements for LHC detectors,” JINR Communication E-14-98-245 (Dubna, 1998).

    Google Scholar 

  27. S. N. Gladkikh, V. V. Golikov, G. D. Kekelidze, S. V. Mishin, and V. D. Peshekhonov, “Radiation hardness of certain polymers and epoxy adhesives,” Preprint JINR R13-2001-275 (Dubna, 2001) [in Russian].

    Google Scholar 

  28. C. Bino, R. Mussa, S. Palestini, N. Pastrone, and L. Pesando, “Charge division in a small proportional chamber constructed with aluminized Mylar tubes,” Nucl. Instrum. Methods Phys. Res., A 271, 417–422 (1988).

    Article  ADS  Google Scholar 

  29. Y. Takubo, M. Aoki, A. Ishihara, J. Ishii, Y. Kuno, F. Maeda, K. Nakahara, N. Nosaka, H. Sakamoto, A. Sato, K. Terai, Y. Igarashi, and T. Yokoi, “Development and performance of resistive seamless straw-tube gas chambers,” Nucl. Instrum. Methods Phys. Res., A 551, 271–284 (2005).

    Article  ADS  Google Scholar 

  30. S. H. Oh, A. T. Goshaw, and W. J. Robertson, “Construction and performance of a 2.7 m long straw drift tube prototype chamber for the SSC,” Nucl. Instrum. Methods Phys. Res., A 309, 368–376 (1991).

    Article  ADS  Google Scholar 

  31. H. Ogren et al. (SDC Collab.), “The straw tracker for the SDC detector,” Nucl. Instrum. Methods Phys. Res., A 367, 133–137 (1995).

    Article  ADS  Google Scholar 

  32. V. N. Bychkov, G. D. Kekelidze, A. B. Ivanov, V. V. Livinski, S. P. Lobastov, V. M. Lyssan, S. V. Mishin, and V. D. Peshekhonov, “Some characteristics of the long straw drift tubes,” JINR Communication E-13-98-209 (Dubna, 1998).

    Google Scholar 

  33. S. E. Vasilyev, V. I. Davkov, K. I. Davkov, V. V. Myalkovskiy, V. D. Peshekhonov, A. A. Savenkov, V. D. Cholakov, and A. P. Shmeleva, “Signal transmission lines for large-size segmented straw detectors,” Instrum. Exp. Tech. 51, 820–825 (2008).

    Article  Google Scholar 

  34. J. Marzec, K. Zaremba, Z. Pawlowski, and B. Konarzewski, “Signal propagation in straw tubes with resistive cathode,” IEEE Trans. Nucl. Sci. 47(1), 18–24 (2000).

    Article  ADS  Google Scholar 

  35. C. Lu, J. G. Heinrich, K. T. McDonald, R. Burnstein, H. Rubin, D. T. Hackworth, J. W. Bartell, Jr., and J. Szedon, “Proposal to the SSC laboratory for research and development of a straw-tube tracking subsystem,” SSC-PC-029 (Department Of Energy, Office of Energy Research, 1989).

    Google Scholar 

  36. R. A. Boie, V. Radeka, P. Rehak, and D. M. Xi, “Second coordinate readout in drift chambers by timing of the electromagnetic wave propagating along the anode wire,” IEEE Trans. Nucl. Sci. 28(1), 471–477 (1988).

    Article  ADS  Google Scholar 

  37. V. I. Kalashnikova and M. S. Kozodaev, Detectors of Elementary Particles (Nauka, Moscow, 1966) [in Russian].

    Google Scholar 

  38. K. Kleinknekht, Detectors of Particle Radiation (Cambridge University Press, 1998).

    Google Scholar 

  39. V. Kh. Dodokhov and V. A. Zhukov, “The first Townsend coefficient in argon, xenon, and their mixture,” Preprint JINR R13-80-486 (Dubna, 1980) [in Russian].

    Google Scholar 

  40. D. H. Perkins, Introduction to High Energy Physics (Addison-Wesley, 1972; Energoatomizdat, Moscow, 1991).

    Google Scholar 

  41. R. M. van der Eijk, “Track reconstruction in the LHCb experiment,” PhD Thesis (Univ. of Amsterdam, Amsterdam, 2002), pp. 45–58.

    Google Scholar 

  42. A. Cattai and G. Rolandi, “Wire chambers,” J. Phys. G: Nucl. Part. Phys. 33, 280–281 (2006).

    Google Scholar 

  43. N. D. Dikusar, V. V. Myalkovskiy, E. A. Nazieva, and V. D. Peshekhonov, “The spatial resolution of two-layer coordinate detectors based on thin-walled drift tubes,” Phys. Part. Nucl. Lett. 9, 54–57 (2012).

    Article  Google Scholar 

  44. A. Peisert and F. Sauli, Drift and Diffusion of Electrons in Gases: A Compilation, CERN EP-84-08 (CERN, Geneva, 1984).

    Google Scholar 

  45. V. N. Bychkov, I. A. Golutvin, Yu. V. Ershov, E. V. Zubarev, A. B. Ivanov, V. N. Lysiakov, A. V. Makhankov, S. A. Movchan, V. D. Peshekhonov, and T. Preda, “A high precision straw tube chamber with cathode readout,” Nucl. Instrum. Methods Phys. Res., A 325, 158–160 (1992).

    Article  ADS  Google Scholar 

  46. V. N. Bychkov, G. D. Kekelidze, E. A. Novikov, V. D. Peshekhonov, M. D. Shafranov, and V. E. Zhiltsov, “Cathode readout with stripped resistive drift tubes,” Nucl. Instrum. Methods Phys. Res., A 367, 276–279 (1995).

    Article  ADS  Google Scholar 

  47. G. D. Alekseev, D. M. Khazins, and V. V. Kruglov, “Self-quenching streamer discharge in a wire chamber,” Sov. J. Part. Nucl. 13, 293–313 (1982).

    Google Scholar 

  48. J. J. Lowke and J. H. Parker, “Theory of electron diffusion parallel to electric fields. II. Application to real gases,” Phys. Rev. 181, 302–311 (1969).

    Article  ADS  Google Scholar 

  49. V. M. Lutsenko, V. V. Myalkovskii, and V. D. Peshekhonov, “Time-amplitude characteristics of thin-walled drift tubes (straws) for gas mixtures ArCO2 with CF4 and O2 additives,” Phys. Part. Nucl. Lett. 3, 273–279 (2006).

    Article  Google Scholar 

  50. E. W. Vaandering (BTeV Collab.), “The BTeV experiment,” Eur. Phys. J. C 33, s987–s989 (2004).

    Article  ADS  Google Scholar 

  51. E. Abat, T. N. Addy, T. P. A. Akesson, et al. (ATLAS TRT Collab.), “The ATLAS TRT barrel detector,” J. Instrum. 3, P02014 (2008).

    Article  Google Scholar 

  52. A. Sharma and F. Sauli, “Low mass gas mixtures for drift chambers operation,” Nucl. Instrum. Methods Phys. Res., A 350, 470–477 (1994).

    Article  ADS  Google Scholar 

  53. M. Deptuch, K. Jelen, D. Kisielewska, S. Koperny, T. Z. Kowalski, B. Mindur, Z. Hajduk, and J. Olszowska, “The temperature coefficient of the gas gain in TRT detector,” ATL-INDET-2002-011 (CERN, Geneva, 2002).

    Google Scholar 

  54. P. Cwetanski, “Straw performance studies and quality assurance for the ATLAS transition radiation tracker,” PhD Thesis (Univ. of Helsinki, Helsinki, 2006).

    Google Scholar 

  55. S. Bachmann, I. Bagaturia, H. Deppe, F. Eisele, T. Haas, L. Hajduk, U. Langenegger, J. Michalowski, A. Nawrot, G. Polok, et al., “The straw tube technology for the LHCb outer tracking system,” Nucl. Instrum. Methods Phys. Res., A 535, 171–174 (2004).

    Article  ADS  Google Scholar 

  56. S. F. King, K. Long, Y. Nagashima, B. L. Roberts, O. Yasuda, et al. (ISS Physics Working Group), “Physics at a future Neutrino Factory and super-beam facility,” Rep. Prog. Phys. 72, 106201 (2009).

    Article  ADS  Google Scholar 

  57. P. Wintz and COSY-TOF Collab., “A large tracking detector in vacuum consisting of self-supporting straw tubes,” AIP Conf. Proc. 698, 789–792 (2004).

    Article  ADS  Google Scholar 

  58. A. Sokolov, J. Ritman, and P. Wintz, “Application of the time-dependent charge asymmetry method for longitudinal position determination in prototype proportional chambers for the PANDA experiment,” Nucl. Instrum. Methods Phys. Res., A 574, 50–56 (2007).

    Article  ADS  Google Scholar 

  59. I. A. Zhukov, K. A. Levterov, V. M. Lutsenko, V. V. Myalkovskii, L. Naumann, and V. D. Peshekhonov, “Studies of rate capability of thin-film drift tubes (straws),” Preprint JINR R13-2005-126 (Dubna, 2005) [in Russian].

    Google Scholar 

  60. T. Akesson, H. Carling, B. Dolgoshein, et al. (RD6 Collab.), “The Atlas TRT straw proportional tubes: performance at very high counting rate,” Nucl. Instrum. Methods Phys. Res., A 367, 143–153 (1995).

    Article  ADS  Google Scholar 

  61. S. H. Oh, C. H. Wang, and W. L. Ebenstein, “A super high rate straw drift chamber,” Nucl. Instrum. Methods Phys. Res., A 425, 75–83 (1999).

    Article  ADS  Google Scholar 

  62. H. F.-W. Sadrozinski and A. Seiden, “Tracking detectors for the sLHC, the LHC upgrade,” Nucl. Instrum. Methods Phys. Res., A 541, 434–440 (2005).

    Article  ADS  Google Scholar 

  63. K. S. Viriasov, Yu. V. Gusakov, I. A. Zhukov, V. D. Peshekhonov, and A. A. Savenkov, “Two-wire anodes for the straw detectors,” JINR Communication E-13-2005-127 (Dubna, 2005).

    Google Scholar 

  64. K. Davkov, V. Davkov, R. Geyer, Y. V. Gusakov, G. D. Kekelidze, V. V. Myalkovskiy, L. Naumann, D. V. Peshekhonov, V. D. Peshekhonov, A. A. Savenkov, V. O. Tikhomirov, and K. S. Viryasov, “Development of segmented straws for very high-rate capability coordinate detector,” Nucl. Instrum. Methods Phys. Res., A 584, 285–290 (2008).

    Article  ADS  Google Scholar 

  65. K. I. Davkov, V. V. Myalkovskii, V. D. Peshekhonov, and A. A. Savenkov, “Development of a readout cable with a small amount of material for segmented drift tubes,” Preprint JINR R13-2010-105 (2010) [in Russian].

    Google Scholar 

  66. V. Davkov, K. Davkov, V. V. Myalkovskiy, L. Naumann, V. D. Peshekhonov, A. A. Savenkov, K. S. Viryasov, and I. A. Zhukov, “Development of high granulated straw chambers of large sizes,” Phys. Part. Nucl. Lett. 4, 323–326 (2007).

    Article  Google Scholar 

  67. S. N. Bazylev, K. I. Davkov, I. Gregor, D. Haas, S. V. Mouraviev, V. V. Myalkovskiy, L. Naumann, V. D. Peshekhonov, C. Rembser, I. A. Rufanov, N. A. Russakovich, P. Senger, A. V. Shutov, I. V. Slepnev, S. Yu. Smirnov, V. O. Tikhomirov, and I. A. Zhukov, “A prototype coordinate detector based on granulated thin-walled drift tubes,” Nucl. Instrum. Methods Phys. Res., A 632, 75–80 (2011).

    Article  ADS  Google Scholar 

  68. Yu. V. Gusakov, V. I. Davkov, K. I. Davkov, I. A. Zhukov, V. M. Lutsenko, V. V. Myalkovskii, V. D. Peshekhonov, and A. A. Savenkov, “Multichannel prototype detector based on segmented straws,” Phys. Part. Nucl. Lett. 7, 132–137 (2010).

    Article  Google Scholar 

  69. T. Akesson, A. Antonov, V. Bondarenko, et al. (ATLAS TRT Collab.), “Straw tube drift-time properties and electronics parameters for the ATLAS TRT detector,” Nucl. Instrum. Methods Phys. Res., A 449, 446–460 (2000).

    Article  ADS  Google Scholar 

  70. T. Haas (EUDET Collab.), “A pixel telescope for detector R&D for an international linear collider,” Nucl. Instrum. Methods Phys. Res., A 569, 53–56 (2006).

    Article  ADS  Google Scholar 

  71. D. Haas, “JRA1 milestone: Final readout ready,” http://www.eudet.org/e26/e28/e615/e849/eudetmemo-2008-52.pdf.

  72. R. Debbe, J. Fischer, D. Lissauer, T. Ludlam, D. Makowiecki, E. O’Brien, V. Radeka, S. Rescia, L. Rogers, G. C. Smith, D. Stephani, B. Yu, S.V. Greene, T. K. Hemmick, J. T. Mitchell, and B. Shivakumar, “A study of wire chambers with highly segmented cathode pad readout for high multiplicity charged particle detection,” IEEE Trans. Nucl. Sci. 37(2), 88–94 (1990).

    Article  ADS  Google Scholar 

  73. K. Lau, B. Mayes, and J. Pyrlik, “Test results of a high precision cathode strip chamber based on plastic streamer tubes,” Nucl. Instrum. Methods Phys. Res., A 354, 376–388 (1995).

    Article  ADS  Google Scholar 

  74. K. Lau and J. Pyrlik, “Optimization of centroid-finding algorithms for cathode strip chambers,” Nucl. Instrum. Methods Phys. Res., A 366, 298–309 (1995).

    Article  ADS  Google Scholar 

  75. G. Battistoni, P. Campana, V. Chiarella, U. Denni, E. Iarocci, and G. Nicoletti, “Resistive cathode transparency,” Nucl. Instrum. Methods Phys. Res. 202, 459–464 (1982).

    Article  ADS  Google Scholar 

  76. I. A. Golutvin, S. A. Movchan, V. D. Peshekhonov, and T. Preda, “Two methods to estimate the position resolution for straw chambers with strip readouts,” Nucl. Instrum. Methods Phys. Res., A 333, 536–539 (1993).

    Article  ADS  Google Scholar 

  77. V. N. Bychkov, G. D. Kekelidze, S. P. Lobastov, V.M. Lysan, S. V. Muraviev, E. A. Novikov, V. D. Peshekhonov, and A. V. Chizhov, “Spatial characteristics of thin-film straw detectors with a cathode readout,” Instrum. Exp. Tech. 41, 315–319 (1998).

    Google Scholar 

  78. J. Chiba, H. Iwasaki, T. Kageyama, S. Kuribayashi, K. Nakamura, T. Sumiyoshi, and T. Takeda, “Study of position resolution for cathode readout MWPC with measurement of induced charge distribution,” Nucl. Instrum. Methods Phys. Res. 206, 451–463 (1983).

    Article  ADS  Google Scholar 

  79. N. A. Kuchinskii, V. A. Baranov, V. N. Duginov, F. E. Zyazyulya, A. S. Korotchenko, A. O. Koleanikov, N. P. Kravchuk, S. A. Movchan, A. I. Rudenko, V. S. Smirnov, N. V. Khomutov, and V. A. Chekhovskii, “Use of the cathode surface of a drift tube for the construction of a tracking detector with a high rate capability,” Preprint JINR R13-2013-100 (Dubna, 2013) [in Russian].

    Google Scholar 

  80. S. Costanza, L. Benussi, A. Braghieri, G. Boca, P. Genova, P. Gianotti, L. Lavezzi, V. Lucherini, P. Montagna, D. Orecchini, D. Pierluigi, J. Ritman, M. Roeder, A. Rotondi, A. Russo, and P. Wintz, “The straw tube tracker of the PANDA experiment,” Nucl. Instrum. Methods Phys. Res., A 617, 148–150 (2010).

    Article  ADS  Google Scholar 

  81. A. M. Makankin, V. V. Myalkovskiy, V. D. Peshekhonov, S. Ritt, and S. E. Vasilyev, “A direct time measurement technique for the two-dimensional precision coordinate detectors based on thin-walled drift tubes,” Nucl. Instrum. Methods Phys. Res., A 735, 649–654 (2014).

    Article  ADS  Google Scholar 

  82. S. E. Vasilyev, A. M. Makankin, V. V. Myalkovskiy, and V. D. Peshekhonov, “A direct time measurement technique for determining the longitudinal coordinate in thin-walled drift tubes,” Instrum. Exp. Tech. 57, 558–563 (2014).

    Article  Google Scholar 

  83. N. A. Filatova, T. S. Nigmanov, V. P. Pugachevich, V. D. Riabtsov, M. D. Shafranov, E. N. Tsyganov, D. V. Uralsky, A. S. Vodopianov, F. Sauli, and M. Atac, “Study of drift chamber system for a K-e scattering experiment at the Fermi National Accelerator Laboratory,” Nucl. Instrum. Methods 143, 17–28 (1977).

    Article  ADS  Google Scholar 

  84. W. Farr, J. Heintze, K. H. Hellenbrand, and A. H. Walenta, “Space resolution of drift chambers operated at high gas pressure,” Nucl. Instrum. Methods 154, 175–181 (1978).

    Article  ADS  Google Scholar 

  85. E. Barbarito, M. T. Chiaradia, G. De Cataldo, C. Favuzzi, N. Giglietto, M. Mongelli, M. Perchiazzi, A. Raino, A. Sacchetti, and P. Spinelli, “Straw chambers operating in vacuum for particle tracking and transition radiation detection in accelerator and space experiments,” Nucl. Instrum. Methods Phys. Res., A 381, 39–48 (1996).

    Article  ADS  Google Scholar 

  86. K. Nuenighoff, C. Fanara, D. Filges, R. Geyer, K. Kilian, and M. Schmitz, “A light straw tracker detector working in vacuum,” Nucl. Instrum. Methods Phys. Res., A 477, 410–413 (2002).

    Article  ADS  Google Scholar 

  87. V. I. Davkov, K. I. Davkov, V. V. Myalkovskiy, and V. D. Peshekhonov, “High-pressure thin-wall drift tubes,” Instrum. Exp. Tech. 51, 787–791 (2008).

    Article  Google Scholar 

  88. Y. Naito, Y. Kamiya, K. Terada, K. Mizoguchi, and J.-S. Wang, “Pressure dependence of gas permeability in a rubbery polymer,” J. Appl. Polym. Sci. 61, 945–950 (1996).

    Article  Google Scholar 

  89. M. H. Klopffer and B. Flaconnéche, “Transport properties of gases in polymers: bibliographic review,” Oil Gas Sci. Technol. 56, 223–244 (2001).

    Article  Google Scholar 

  90. H. Tsukioka, K. Sugawara, E. Mori, S. Hukumori, and S. Sakai, “New apparatus for detecting H2, CO, and CH4 dissolved in transformer oil,” IEEE Trans. Electr. Insul. EI-18(4), 409–419 (1983).

    Article  Google Scholar 

  91. K. I. Davkov, I. A. Zhukov, V. V. Myalkovskiy, V. D. Peshekhonov, and N. A. Rusakovich, “A coordinate muon chamber based on thin-walled drift tubes,” Instrum. Exp. Tech. 56, 525–530 (2013).

    Article  Google Scholar 

  92. V. D. Peshekhonov, “New capabilities of coordinate detectors on the basis of the straws,” in Proceedings of the 35th International Conference on High Energy Physics, Paris, France, 2010, (Proceedings of Science, 2010).

    Google Scholar 

  93. V. I. Davkov, I. Gregor, D. Haas, S. V. Mouraviev, V. V. Myalkovskiy, L. Naumann, V. D. Peshekhonov, C. Rembser, I. Rufanov, N. Russakovich, P. Senger, S. Yu. Smirnov, and V. O. Tikhomirov, “Spatial resolution of thin-walled high-pressure drift tubes,” Nucl. Instrum. Methods Phys. Res., A 634, 5–7 (2011).

    Article  ADS  Google Scholar 

  94. K. I. Davkov, V. V. Myalkovskiy, V. D. Peshekhonov, and V. D. Cholakov, “Operation mode of high pressure straws with high spatial resolution,” Phys. Part. Nucl. Lett. 11, 269–273 (2014).

    Article  Google Scholar 

  95. V. D. Peshekhonov, “Wire gaseous coordinate detectors and their applications in biomedical research,” Sov. J. Part. Nucl. 17, 456–478 (1986).

    Google Scholar 

  96. H. S. Ahn, P. Allison, M. G. Bagliesi, J. J. Beatty, G. Bigongiari, P. Boyle, J. T. Childers, N. B. Conklin, S. Coutu, M. A. DuVernois, O. Ganel, J. H. Han, J. A. Jeon, K. C. Kim, J. K. Lee, M. H. Lee, L. Lutz, P. Maestro, A. Malinin, P. S. Marrocchesi, S. A. Minnick, S. I. Mognet, S. W. Nam, S. L. Nutter, I. H. Park, N. H. Park, E. S. Seo, R. Sina, S. P. Swordy, S. P. Wakely, J. Wu, J. Yang, Y. S. Yoon, R. Zei, and S. Y. Zinn, “The Cosmic Ray Energetics And Mass (CREAM) instrument,” Nucl. Instrum. Methods Phys. Res., A 579, 1034–1053 (2007).

    Article  ADS  Google Scholar 

  97. P. von Doetinchem, S. Fopp, W. Karpinski, T. Kirn, K. Luebelsmeyer, J. Orboeck, S. Schael, A. Schultz von Dratzig, G. Schwering, T. Siedenburg, R. Siedling, W. Wallraff, U. Becker, J. Burger, R. Henning, A. Kounine, V. Koutsenko, and J. Wyatt, “Performance of the AMS-02 transition radiation detector,” Nucl. Instrum. Methods Phys. Res., A 558, 526–535 (2006).

    Article  ADS  Google Scholar 

  98. Th. Siedenburg et al., “A transition radiation detector for AMS,” Nucl. Phys. B, Proc. Suppl. 113, 154–158 (2002).

    Article  ADS  Google Scholar 

  99. N. N. Shehad, A. Athanasiades, C. S. Martin, S. Liang, and J. L. Lacy, “Small animal PET camera design based on 2-mm straw detectors,” IEEE Nucl. Sci. Symp. Conf. Rec. 2006 4, 2462–2468 (2006).

    Article  Google Scholar 

  100. J. L. Lacy, C. S. Martin, and L. P. Armendarez, “High sensitivity, low cost PET using lead-walled straw detectors,” Nucl. Instrum. Methods Phys. Res., A 471, 88–93 (2001).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. D. Peshekhonov.

Additional information

Original Russian Text © V.D. Peshekhonov, 2015, published in Fizika Elementarnykh Chastits i Atomnogo Yadra, 2015, Vol. 46, No. 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peshekhonov, V.D. Coordinate detectors based on thin-wall drift tubes. Phys. Part. Nuclei 46, 94–122 (2015). https://doi.org/10.1134/S1063779615010062

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779615010062

Keywords

Navigation