Skip to main content
Log in

Radiation detectors based on gas electron multipliers (Review)

  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

Remarkable features of gas electron multipliers (GEMs) make them attractive for numerous applications in high-energy physics, nuclear physics, astrophysics, and the medical-imaging field. This review presents the results of research and development of GEM-based radiation detectors. The operating principles of GEMs and their main characteristics, including the physics of multistage GEMs and their operation in pure noble gases, are expounded. GEM-based detectors of ionizing radiations are considered. In particular, the data on tracking detectors are briefly described, while more detailed data, including the data on two-phase avalanche detectors, are presented for detectors operated at high pressures and cryogenic temperatures. A special Section is devoted to the development of GEM-based gas photodetectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sauli, F., Experimental Techniques in High Energy Physics, Ferbel, T., Ed., Reading: Addison-Wesley, 1987; Preprint CERN, Geneva, 1977, no. 77-09.

    Google Scholar 

  2. Sauli, F. and Sharma, A., Annu. Rev. Nucl. Part. Sci., 1999, vol. 49, p. 341.

    Article  ADS  Google Scholar 

  3. Oed, A., Nucl. Instrum. Methods Phys. Res. A, 1988, vol. 263, p. 351.

    Article  ADS  Google Scholar 

  4. Sauli, F., Nucl. Instrum. Methods Phys. Res. A, 1997, vol. 386, p. 531.

    Article  ADS  Google Scholar 

  5. Sauli, F., US Patent 6 011 265, 2000.

  6. Altunbas, C., Capeans, M., Dehmelt, K., et al., Nucl. Instrum. Methods Phys. Res. A, 2002, vol. 490, p. 177.

    Article  ADS  Google Scholar 

  7. Ketzer, B., Weitzel, Q., Paul, S., et al., Nucl. Instrum. Methods Phys. Res. A, 2004, vol. 535, p. 314.

    Article  ADS  Google Scholar 

  8. Aulchenko, V.M., Bondar, A.E., Buzulutskov, A.F., et al., Nucl. Instrum. Methods Phys. Res. A, 2002, vol. 494, p. 241.

    Article  ADS  Google Scholar 

  9. Bozzo, M., Oriunno, M., Ropelewski, L., et al., in Proc. IEEE Nucl. Sci. Symp., Rome: Italy, 2004, vol. 1, p. 447.

    Google Scholar 

  10. http://gdd.web.cern.ch/GDD/.

  11. Bachmann, S., Bressan, A., Ketzer, B., et al., Nucl. Instrum. Methods Phys. Res. A, 2001, vol. 470, p. 548.

    Article  ADS  Google Scholar 

  12. Alfonsi, M., Bencivenni, G., Bonivento, W., et al., Nucl. Instrum. Methods Phys. Res. A, 2004, vol. 535, p. 319.

    Article  ADS  Google Scholar 

  13. Alfonsi, M., Bencivenni, G., de Simone, P., et al., Nucl. Instrum. Methods Phys. Res. A, 2004, vol. 518, p. 106.

    Article  ADS  Google Scholar 

  14. TESLA Technical Design Report. Part IV, Behnke, T., Bertolucci, S., Heuer, R.-D., and Settles, R., Eds., Preprint DESY 2001-011 and ECFA 2001-209, Hamburg, 2001.

  15. Karlen, D., Poffenberger, P., and Rosenbaum, G., Nucl. Instrum. Methods Phys. Res. A, 2005, vol. 555, p. 80.

    Article  ADS  Google Scholar 

  16. Ableev, V., Ambrosino, F., Apollonio, M., et al., IEEE Trans. Nucl. Sci., 2005, vol. 52, p. 2944.

    Article  Google Scholar 

  17. TPC R&D for an ILC Detector: Status Report from the ILC-TPC Groups, Proposal PRC R&D-01/03 of the DESY Physics Review Committee, 2006; http://www.desy.de/prc/.

  18. Fraenkel, Z., Kozlov, A., Naglis, M., et al., Nucl. Instrum. Methods Phys. Res. A, 2005, vol. 546, p. 466.

    Article  ADS  Google Scholar 

  19. Kozlov, A., Ravinovich, I., Shekhtman, L., et al., Nucl. Instrum. Methods Phys. Res. A, 2004, vol. 523, p. 344.

    Article  ADS  Google Scholar 

  20. Buzulutskov, A., Breskin, A., Chechik, R., et al., Nucl. Instrum. Methods Phys. Res. A, 2000, vol. 443, p. 164.

    Article  ADS  Google Scholar 

  21. Breskin, A., Boutboul, T., Buzulutskov, A., et al., Nucl. Instrum. Methods Phys. Res. A, 2000, vol. 442, p. 58.

    Article  ADS  Google Scholar 

  22. Breskin, A., Buzulutskov, A., Chechik, R., et al., IEEE Trans. Nucl. Sci., 2001, vol. 48, p. 417.

    Article  Google Scholar 

  23. Breskin, A., Buzulutskov, A., Chechik, R., et al., Nucl. Instrum. Methods Phys. Res. A, 2002, vol. 478, p. 225.

    Article  ADS  Google Scholar 

  24. Chechik, R., Balcerzyk, M., Breskin, A., et al., Nucl. Instrum. Methods Phys. Res. A, 2003, vol. 502, p. 195.

    Article  ADS  Google Scholar 

  25. Mormann, D., Balcerzyk, M., Breskin, A., et al., Nucl. Instrum. Methods Phys. Res. A, 2003, vol. 504, p. 93.

    Article  ADS  Google Scholar 

  26. Balcerzyk, M., Morman, D., Breskin, A., et al., IEEE Trans. Nucl. Sci., 2003, vol. 50, p. 847.

    Article  Google Scholar 

  27. Breskin, A., Mormann, D., Lyashenko, A., et al., Nucl. Instrum. Methods Phys. Res. A, 2005, vol. 553, p. 46.

    Article  ADS  Google Scholar 

  28. Breskin, A., Buzulutskov, A., and Chechik, R., Nucl. Instrum. Methods Phys. Res. A, 2002, vol. 483, p. 670.

    Article  ADS  Google Scholar 

  29. Buzulutskov, A., Bondar, A., Shekhtman, L., et al., IEEE Trans. Nucl. Sci., 2003, vol. 50, p. 2491.

    Article  Google Scholar 

  30. Bondar, A., Buzulutskov, A., Shekhtman, L., et al., Nucl. Instrum. Methods Phys. Res. A, 2004, vol. 524, p. 130.

    Article  ADS  Google Scholar 

  31. Bondar, A., Buzulutskov, A., Pavluchenko, D., et al., Nucl. Instrum. Methods Phys. Res. A, 2004, vol. 535, p. 299.

    Article  ADS  Google Scholar 

  32. Bondar, A., Buzulutskov, A., Pavluchenko, D., et al., Nucl. Instrum. Methods Phys. Res. A, 2005, vol. 548, p. 439.

    Article  ADS  Google Scholar 

  33. Buzulutskov, A., Dodd, J., Galea, R., et al., Nucl. Instrum. Methods Phys. Res. A, 2005, vol. 548, p. 487.

    Article  ADS  Google Scholar 

  34. Bondar, A., Buzulutskov, A., Grebenuk, A., et al., Nucl. Instrum. Methods Phys. Res. A, 2006, vol. 556, p. 273.

    Article  ADS  Google Scholar 

  35. Galea, R., Dodd, J., Ju, Y., et al., IEEE Trans. Nucl. Sci., 2006, vol. 53, p. 2260.

    Article  Google Scholar 

  36. Dodd, J., Leltchouk, M., Radeka, V., et al., E-Bubble Chamber Project, http://www.nevis.columbia.edu/:_ebubble/; Willis, W.J., Tracking with Electron Bubbles. BNL Instrumentation Division Seminar, 2003, https://www.inst.bnl.gov/seminar.

  37. Ereditato, A. and Rubbia, A., http://arxiv.org/hepph/0509022.

  38. Rubbia, A., http://arxiv.org/hep-ph/0510320.

  39. Barbeau, P., Collar, J.I., Miyamoto, J., and Shipsey, I., IEEE Trans. Nucl. Sci., 2003, vol. 50, p. 1285.

    Article  Google Scholar 

  40. Hagmann, C. and Bernstein, A., IEEE Trans. Nucl. Sci., 2004, vol. 51, p. 2151.

    Article  Google Scholar 

  41. Bachmann, S., Kappler, S., Ketzer, B., et al., Nucl. Instrum. Methods Phys. Res. A, 2002, vol. 478, p. 104.

    Article  ADS  Google Scholar 

  42. Bellazzini, R., Angelini, F., Baldini, L., et al., Nucl. Instrum. Methods Phys. Res. A, 2006, vol. 560, p. 425.

    Article  ADS  Google Scholar 

  43. Danielsson, M., Fonte, P., Francke, T., et al., Nucl. Instrum. Methods Phys. Res. A, 2004, vol. 518, p. 406.

    Article  ADS  Google Scholar 

  44. Fraga, F.A.F., Margato, L.M.S., and Fetal, S.T.G., Nucl. Instrum. Methods Phys. Res. A, 2003, vol. 513, p. 379.

    Article  ADS  Google Scholar 

  45. Margato, L.M.S., Fraga, F.A.F., Fetal, S.T.G., et al., Nucl. Instrum. Methods Phys. Res. A, 2004, vol. 535, p. 231.

    Article  ADS  Google Scholar 

  46. Aulchenko, A., Zhulanov, V., Shekhtman, L., et al., Nucl. Instrum. Methods Phys. Res. A, 2005, vol. 543, p. 350.

    Article  ADS  Google Scholar 

  47. Aulchenko, V.M., Bukin, M.A., Papushev, P.A., et al., in Int. Synchrotron Radiation Conf., Novosibirsk, 2006.

  48. Bressan, A., Buzulutskov, A., Ropelewski, L., et al., Nucl. Instrum. Methods Phys. Res. A, 1999, vol. 423, p. 119.

    Article  ADS  Google Scholar 

  49. Buzulutskov, A., Shekhtman, L., Bressan, A., et al., Nucl. Instrum. Methods Phys. Res. A, 1999, vol. 433, p. 471.

    Article  ADS  Google Scholar 

  50. Buzulutskov, A., Breskin, A., Chechik, R., et al., Nucl. Instrum. Methods Phys. Res. A, 2000, vol. 442, p. 68.

    Article  ADS  Google Scholar 

  51. Bondar, A., Buzulutskov, A., Sauli, F., and Shekhtman, L., Nucl. Instrum. Methods Phys. Res. A, 1998, vol. 419, p. 418.

    Article  ADS  Google Scholar 

  52. Bondar, A., Buzulutskov, A., and Shekhtman, L., Nucl. Instrum. Methods Phys. Res. A, 2002, vol. 481, p. 200.

    Article  ADS  Google Scholar 

  53. Bondar, A., Buzulutskov, A., Shekhtman, L., et al., Nucl. Instrum. Methods Phys. Res. A, 2002, vol. 493, p. 8.

    Article  ADS  Google Scholar 

  54. Buzulutskov, A., Nucl. Instrum. Methods Phys. Res. A, 2002, vol. 494, p. 148.

    Article  ADS  Google Scholar 

  55. Aulchenko, V., Bondar, A., Buzulutskov, A., et al., Nucl. Instrum. Methods Phys. Res. A, 2003, vol. 513, p. 256.

    Article  ADS  Google Scholar 

  56. Chen, M. and Bolozdynya, A., US Patent no. 5665971, 1997.

  57. Buzulutskov, A., Bondar, A., Shekhtman, L., et al., Proposal for CRDF grant RP1-2550-NO-3, 2003; in Int. Symp. on Development of Detectors for Particle, Astro-Particle and Synchrotron Radiation Experiments, SLAC, Stanford, United States, 2006, http://www.conf.slac.stanford.edu/snic/.

  58. Buzulutskov, A., Grebenuk, A., Pavlyuchenko, D., et al., Proposal for INTAS Grant 04-78-6744, 2004; Presented at Int. Symp. on Development of Detectors for Particle, Astro-Particle and Synchtotron Radiation Experiments, SLAC, Stanford, United States 2006, http://www.conf.slac.stanford.edu/snic/.

  59. Sauli, F., Nucl. Instrum. Methods Phys. Res. A, 2003, vol. 505, p. 195.

    Article  ADS  Google Scholar 

  60. Sauli, F., Nucl. Instrum. Methods Phys. Res. A, 2004, vol. 522, p. 93.

    Article  ADS  Google Scholar 

  61. Shekhtman, L., Nucl. Instrum. Methods Phys. Res. A, 2002, vol. 494, p. 128.

    Article  ADS  Google Scholar 

  62. Bachmann, S., Bressan, A., Ropelewski, L., et al., Nucl. Instrum. Methods Phys. Res. A, 1999, vol. 438, p. 376.

    Article  ADS  Google Scholar 

  63. Bachmann, S., Bressan, A., Ropelewski, L., et al., Nucl. Instrum. Methods Phys. Res. A, 1999, vol. 433, p. 464.

    Article  ADS  Google Scholar 

  64. Bressan, A., De Oliveira, R., Gandi, A., et al., Nucl. Instrum. Methods Phys. Res. A, 1999, vol. 425, p. 254.

    Article  ADS  Google Scholar 

  65. Ziegler, M., Sievers, P., and Straumann, U., Nucl. Instrum. Methods Phys. Res. A, 2001, vol. 471, p. 260.

    Article  ADS  Google Scholar 

  66. Maia, J.M., Veloso, J.F.C.A., Santos, J.M.F., et al., Nucl. Instrum. Methods Phys. Res. A, 2003, vol. 504, p. 364.

    Article  ADS  Google Scholar 

  67. Amaro, F., Veloso, J.F.C.A., Maia, J.M., et al., Nucl. Instrum. Methods Phys. Res. A, 2004, vol. 535, p. 341.

    Article  ADS  Google Scholar 

  68. Maia, J.M., Mormann, D., Breskin, A., et al., Nucl. Instrum. Methods Phys. Res. A, 2004, vol. 523, p. 334.

    Article  ADS  Google Scholar 

  69. Veloso, J.F.C.A., Amaro, F.D., Maia, J.M., et al., Nucl. Instrum. Methods Phys. Res. A, 2005, vol. 548, p. 375.

    Article  ADS  Google Scholar 

  70. Veloso, J.F.C.A., Amaro, F., Santos, J.M.F., et al., IEEE Trans. Nucl. Sci., 2004, vol. 51, p. 2104.

    Article  Google Scholar 

  71. Amaro, F.D., Veloso, J.F.C.A., Breskin, A., et al., J. Instrumentation, 2006, vol. 1, p. 04003.

    Article  Google Scholar 

  72. Sakuray, H., Tamura, T., Gunji, S., and Noma, M., Nucl. Instrum. Methods Phys. Res. A, 1996, vol. 374, p. 341.

    Article  ADS  Google Scholar 

  73. Peskov, V., Silin, E., Sokolova, T., and Rodionov, I., Nucl. Instrum. Methods Phys. Res. A, 1999, vol. 433, p. 492.

    Article  ADS  Google Scholar 

  74. Pereiale, L., Peskov, V., Iacobaeus, C., et al., IEEE Trans. Nucl. Sci., 2005, vol. 52, p. 927.

    Article  Google Scholar 

  75. Chechik, R., Breskin, A., Shalem, C., and Mormann, D., Nucl. Instrum. Methods Phys. Res. A, 2004, vol. 535, p. 303.

    Article  ADS  Google Scholar 

  76. Shalem, C., Chechik, R., Breskin, A., and Michaeli, K., Nucl. Instrum. Methods Phys. Res. A, 2006, vol. 558, p. 475.

    Article  ADS  Google Scholar 

  77. Shalem, C.K., Chechik, R., Breskin, A., et al., Nucl. Instrum. Methods Phys. Res. A, 2006, vol. 558, p. 468.

    Article  ADS  Google Scholar 

  78. Charpak, G., Derre, J., Giomataris, Y., and Rebourgeard, P., Nucl. Instrum. Methods Phys. Res. A, 2002, vol. 478, p. 26.

    Article  ADS  Google Scholar 

  79. Vavra, J. and Sharma, A., Nucl. Instrum. Methods Phys. Res. A, 2002, vol. 478, p. 235.

    Article  ADS  Google Scholar 

  80. Bachmann, S., Bressan, A., Capeans, M., et al., Nucl. Instrum. Methods Phys. Res. A, 2002, vol. 479, p. 294.

    Article  ADS  Google Scholar 

  81. Bondar, A., Buzulutskov, A., Shekhtman, L., and Vasiljev, A., Nucl. Instrum. Methods Phys. Res. A, 2003, vol. 496, p. 325.

    Article  ADS  Google Scholar 

  82. Sauli, F., Kappler, S., and Ropelewski, L., IEEE Trans. Nucl. Sci., 2003, vol. 50, p. 803.

    Article  Google Scholar 

  83. Benlloch, J., Bressan, A., Buttner, C., et al., IEEE Trans. Nucl. Sci., 1998, vol. 42, p. 234.

    Article  Google Scholar 

  84. Altunbas, C., Dehmelt, K., Kappler, S., et al., Nucl. Instrum. Methods Phys. Res. A, 2003, vol. 515, p. 249.

    Article  ADS  Google Scholar 

  85. Guirl, L., Kane, S., May, J., et al., Nucl. Instrum. Methods Phys. Res. A, 2002, vol. 478, p. 263.

    Article  ADS  Google Scholar 

  86. Maia, J.M., Mormann, D., Breskin, A., et al., IEEE Trans. Nucl. Sci., 2004, vol. 51, p. 1503.

    Article  Google Scholar 

  87. Park, S.H., Kim, Y.K., Han, S.H., et al., J. Korean Phys. Soc., 2003, vol. 43, p. 332.

    Google Scholar 

  88. Mormann, D., Breskin, A., Chechik, R., and Bloch, D., Nucl. Instrum. Methods Phys. Res. A, 2004, vol. 516, p. 315.

    Article  ADS  Google Scholar 

  89. Killenberg, M., Lotze, S., Mnich, J., et al., Nucl. Instrum. Methods Phys. Res. A, 2004, vol. 530, p. 251.

    Article  ADS  Google Scholar 

  90. Sauli, F., Ropelewski, L., and Everaerts, P., Nucl. Instrum. Methods Phys. Res. A, 2006, vol. 560, p. 269.

    Article  ADS  Google Scholar 

  91. Buzulutskov, A. and Bondar, A., J. Instrumentation, 2006, vol. 1, p. 08006; http://jinst.sissa.it/

    Article  Google Scholar 

  92. Raizer, Yu.P., Fizika gazovogo razryada, Moscow: Nauka, 1987. Translated under the title Gas Breakdown Physics, Berlin: Springer-Verlag, 1991.

    Google Scholar 

  93. Smirnov, B.M., Vozbuzhdennye atomy (Excited Atoms), Moscow: Energoizdat, 1982.

  94. Breskin, A., Buzulutskov, A., Chechik, R., et al., Nucl. Instrum. Methods Phys. Res. A, 1994, vol. 344, p. 537.

    Article  ADS  Google Scholar 

  95. Breskin, A., Buzulutskov, A., Chechik, R., et al., Nucl. Instrum. Methods Phys. Res. A, 1995, vol. 367, p. 342.

    Article  ADS  Google Scholar 

  96. Richter, C., Breskin, A., Chechik, R., et al., Nucl. Instrum. Methods Phys. Res., 2002, vol. 478, p. 538.

    Article  ADS  Google Scholar 

  97. Kruithof, A.A. and Penning, F.M., Physica A, 1937, vol. 4, p. 430.

    Article  Google Scholar 

  98. Chanin, L.M. and Rork, G.D., Phys. Rev., 1963, vol. 132, p. 2547.

    Article  ADS  Google Scholar 

  99. Chanin, L.M. and Rork, G.D., Phys. Rev., 1964, vol. 133, p. A1005.

    Article  ADS  Google Scholar 

  100. Pavlyuchenko, D.V., Master’s Thesis (Phys.), Novosibirsk: Novosibirsk. Gos. Univ., 2004.

    Google Scholar 

  101. Lozannskii, E.D. and Firsov, O.B., Teoriya iskry (Theory of Spark), Moscow: Atomizdat, 1975.

    Google Scholar 

  102. Bagaturia, Y., Baruth, O., Dreis, H.B., et al., Nucl. Instrum. Methods Phys. Res. A, 2002, vol. 490, p. 223.

    Article  ADS  Google Scholar 

  103. Bondar, A., Buzulutskov, A., Shekhtman, L., et al., Nucl. Instrum. Methods Phys. Res. A, 2000, vol. 454, p. 315.

    Article  ADS  Google Scholar 

  104. Bondar, A., Buzulutskov, A., de Oliveira, R., et al., Nucl. Instrum. Methods Phys. Res. A, 2006, vol. 556, p. 495.

    Article  ADS  Google Scholar 

  105. Bondar, A., Buzulutskov, A., Shekhtman, L., and Vasiljev, A., http://arxiv.org/physics/0610059, in Int. Conf. on Linear Colliders, Paris, 2004.

  106. Gorodetzky, P., Patzak, T., Seguinot, J., et al., Nucl. Instrum. Methods Phys. Res. A, 1999, vol. 433, p. 554.

    Article  ADS  Google Scholar 

  107. Orthen, A., Wagner, H., Besch, H.J., et al., Nucl. Instrum. Methods Phys. Res. A, 2003, vol. 512, p. 476.

    Article  ADS  Google Scholar 

  108. Akimov, D.Yu., Prib. Tekh. Eksp., 2001, no. 5, p. 6 [Instrum. Exp. Tech. (Engl. Transl.), no. 5, p. 575].

  109. Chepel, V., Solovov, V., van der Marel, J., et al., IEEE Trans. Nucl. Sci., 1999, vol. 46, p. 1038.

    Article  Google Scholar 

  110. Derenzo, S.E., Mast, T.S., Zaklad, H., and Muller, R.A., Phys. Rev. A, 1974, vol. 9, p. 2582.

    Article  ADS  Google Scholar 

  111. Policarpo, A.J.P.L., Chepel, V., Lopes, M.I., et al., Nucl. Instrum. Methods Phys. Res. A, 1995, vol. 365, p. 568.

    Article  ADS  Google Scholar 

  112. Kim, J.G., Dardin, S.M., Kadel, R.W., et al., Nucl. Instrum. Methods Phys. Res. A, 2004, vol. 534, p. 376.

    Article  ADS  Google Scholar 

  113. Grebinnik, V.G., Dodokhov, V.Kh., Zhukov, V.A., et al., Prib. Tekh. Eksp., 1978, no. 5, p. 66.

  114. Khrapak, A.G. and Yakubov, I.T., Elektrony v plotnykh gazakh i plazme (Electrons in Dense Gases and Plasma), Moscow: Nauka, 1981.

    Google Scholar 

  115. Masaoka, S., Katano, R., Kishimoto, S., and Isozumi, Y., Nucl. Instrum. Methods Phys. Res., 2000, vol. 171, p. 360.

    Article  ADS  Google Scholar 

  116. Chanin, L.M. and Rork, G.D., Phys. Rev. A, 1964, vol. 135, p. 71.

    Article  ADS  Google Scholar 

  117. Dolgoshein, B.A., Lebedenko, V.N., and Rodionov, B.U., Pis’ma Zh. Éksp. Teor. Fiz., 1970, vol. 11, p. 513 [JETP Lett. (Engl. Transl.), vol. 11, p. 351].

    ADS  Google Scholar 

  118. Dolgoshein, B.A., Kruglov, A.A., Lebedenko, V.N., et al., Fiz. Élem. Chastits At. Yadra, 1973, vol. 4, no. 1, p. 167 [Sov. J. Part. Nucl. (Engl. Transl.), vol. 4, no. 1, p. 70].

    Google Scholar 

  119. Barabash, A.S. and Bolozdynya, A.I., Zhidkostnye ionizatsionnye detektory (Liquid Ionization Detector), Moscow: Energoatomizdat, 1993.

    Google Scholar 

  120. Bondar, A., Buzulutskov, A., Grebenuk, A., et al., Further Studies of Two-Phase Ar and Xe Avalanche Detectors, Presented at 11th Vienna Conf. on Instrumentation, Vienna, Austria, 2007; http://vci.oeaw.ac.at/2007/.

  121. Lightfoot, P.K., Hollingworth, R., Spooner, N.J.C., and Tovey, D., Nucl. Instrum. Methods Phys. Res. A, 2005, vol. 554, p. 266.

    ADS  Google Scholar 

  122. Bondar, A., Buzulutskov, A., Grebenuk, A., et al., http://arxiv.org/physics/611068.

  123. Colas, P., Colijn, A.P., Fornaini, A., et al., Nucl. Instrum. Methods Phys. Res. A, 2004, vol. 535, p. 506.

    Article  ADS  Google Scholar 

  124. Seguinot, J. and Ypsilantis, T., Nucl. Instrum. Methods Phys. Res. A, 1994, vol. 343, p. 1.

    Article  ADS  Google Scholar 

  125. Breskin, A., Nucl. Instrum. Methods Phys. Res. A, 1996, vol. 371, p. 116.

    Article  ADS  Google Scholar 

  126. Di Mauro, A., Nucl. Instrum. Methods Phys. Res. A, 2004, vol. 525, p. 173.

    Article  ADS  Google Scholar 

  127. Biteman, V., Guinji, S., Peskov, V., et al., Nucl. Instrum. Methods Phys. Res. A, 2001, vol. 471, p. 205.

    Article  ADS  Google Scholar 

  128. Mormann, D., Breskin, A., Chechik, R., and Shalem, C., Nucl. Instrum. Methods Phys. Res. A, 2004, vol. 530, p. 258.

    Article  ADS  Google Scholar 

  129. Buzulutskov, A., Breskin, A., and Chechik, R., J. Appl. Phys., 1997, vol. 81, p. 466.

    Article  ADS  Google Scholar 

  130. Buzulutskov, A., Shefer, E., Breskin, A., et al., Nucl. Instrum. Methods Phys. Res. A, 1997, vol. 400, p. 173.

    Article  ADS  Google Scholar 

  131. Breskin, A., Advances in Gaseous Photomultipliers, in Fourth Int. Conf. on New Developments in Photodetection, Beaune, France, 2005, http://beaune.in2p3.fr.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.F. Buzulutskov, 2007, published in Pribory i Tekhnika Eksperimenta, 2007, No. 3, pp. 5–30.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buzulutskov, A.F. Radiation detectors based on gas electron multipliers (Review). Instrum Exp Tech 50, 287–310 (2007). https://doi.org/10.1134/S0020441207030013

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441207030013

PACS numbers

Navigation