Skip to main content
Log in

Multiparticle states and the factors that complicate an experimental observation of the quantum coherence in the exciton gas of SiGe/Si quantum wells

  • Electronic Properties of Solid
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The measured stationary and time-resolved photoluminescence is used to study the properties of the exciton gas in a second-order 5-nm-thick Si0.905Ge0.095/Si quantum well. It is shown that, despite the presence of an electron barrier in the Si0.905Ge0.095 layer, a spatially indirect biexciton is the most favorable energy state of the electron–hole system at low temperatures. This biexciton is characterized by a lifetime of 1100 ns and a binding energy of 2.0–2.5 meV and consists of two holes localized in the SiGe layer and two electrons mainly localized in silicon. The formation of biexcitons is shown to cause low-temperature (5 K) luminescence spectra over a wide excitation density range and to suppress the formation of an exciton gas, in which quantum statistics effects are significant. The Bose statistics can only be experimentally observed for a biexciton gas at a temperature of 1 K or below because of the high degree of degeneracy of biexciton states (28) and a comparatively large effective mass (about 1.3m e ). The heat energy at such temperatures is much lower than the measured energy of localization at potential fluctuations (about 1 meV). This feature leads to biexciton localization and fundamentally limits the possibility of observation of quantum coherence in the biexciton gas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sen Yang, A. T. Hammack, M. M. Fogler, L. V. Butov, and A. C. Gossard, Phys. Rev. Lett. 97, 187402 (2006).

    Article  ADS  Google Scholar 

  2. A. A. High, A. T. Hammack, J. R. Leonard, Sen Yang, L. V. Butov, T. Ostatnický, M. Vladimirova, A. V. Kavokin, T. C. H. Liew, K. L. Campman, and A. C. Gossard, Phys. Rev. Lett. 110, 246403 (2013).

    Article  ADS  Google Scholar 

  3. A. V. Gorbunov, V. B. Timofeev, D. A. Demin, and A. A. Dremin, JETP Lett. 90 (2), 146 (2009).

    Article  ADS  Google Scholar 

  4. A. V. Gorbunov and V. B. Timofeev, JETP Lett. 87 (12), 698 (2008).

    Article  ADS  Google Scholar 

  5. K. G. Lagoudakis, M. Wouters, M. Richard, A. Baas, I. Carusotto, R. André, Le Si Dang, and B. Deveaud-Plédran, Nat. Phys. 4, 706 (2008).

    Article  Google Scholar 

  6. P. Bhattacharya, T. Frost, S. Deshpande, M. Z. Baten, A. Hazari, and A. Das, Phys. Rev. Lett. 112, 236802 (2014).

    Article  ADS  Google Scholar 

  7. V. V. Belykh, N. N. Sibeldin, V. D. Kulakovskii, M. M. Glazov, M. A. Semina, C. Schneider, S. Höfling, M. Kamp, and A. Forchel, Phys. Rev. Lett. 110, 137402 (2013).

    Article  ADS  Google Scholar 

  8. V. S. Bagaev, V. S. Krivobok, S. N. Nikolaev, E. E. Onishchenko, A. A. Pruchkina, D. F. Aminev, M. L. Skorikov, D. N. Lobanov, and A. V. Novikov, J. Exp. Theor. Phys. 117 (5), 912 (2013).

    Article  ADS  Google Scholar 

  9. V. S. Bagaev, V. V. Zaitsev, V. S. Krivobok, D. N. Lobanov, S. N. Nikolaev, A. V. Novikov, and E. E. Onishchenko, J. Exp. Theor. Phys. 107 (5), 846 (2008).

    Article  ADS  Google Scholar 

  10. C. Penn, F. Schäffler, G. Bauer, and S. Glutsch, Phys. Rev. B: Condens. Matter 59, 13314 (1999).

    Article  ADS  Google Scholar 

  11. T. Baier, U. Mantz, K. Thonke, R. Sauer, F. Schäffler, and H.-J. Herzog, Phys. Rev. B: Condens. Matter 50, 15191 (1994).

    Article  ADS  Google Scholar 

  12. V. S. Bagaev, V. S. Krivobok, S. N. Nikolaev, E. E. Onishchenko, M. L. Skorikov, A. V. Novikov, and D. N. Lobanov JETP Lett. 94 (1), 63 (2011).

    Article  ADS  Google Scholar 

  13. T. M. Burbaev, M. N. Gordeev, D. N. Lobanov, A. V. Novikov, M. M. Rzaev, N. N. Sibeldin, M. L. Skorikov, V. A. Tsvetkov, and D. V. Shepel, JETP Lett. 92 (5), 305 (2010).

    Article  ADS  Google Scholar 

  14. V. S. Krivobok, S. N. Nikolaev, V. S. Bagaev, V. S. Lebedev, and E. E. Onishchenko, JETP Lett. 100 (5), 306 (2014).

    Article  ADS  Google Scholar 

  15. T. W. Steiner, L. C. Lenchyshyn, M. L. W. Thewalt, J.-P. Noél, N. L. Rowell, and D. C. Houghton, Solid State Commun. 89, 429 (1994).

    Article  ADS  Google Scholar 

  16. D. J. Robbins, L. T. Canham, S. J. Barnett, A. D. Pitt, and P. Calcott, J. Appl. Phys. 71, 1407 (1992).

    Article  ADS  Google Scholar 

  17. L. C. Lenchyshyn, M. L. W. Thewalt, D. C. Houghton, J.-P. Noél, N. L. Rowell, J. C. Sturm, and X. Xiao, Phys. Rev. B: Condens. Matter 47, 16655 (1992).

    Article  ADS  Google Scholar 

  18. L. Yang, J. R. Watling, R. C. W. Wilkins, M. Boriçi, J. R. Barker, A. Asenov, and S. Roy, Semicond. Sci. Technol. 19, 1174 (2004).

    Article  ADS  Google Scholar 

  19. S. N. Nikolaev, V. S. Krivobok, A. Yu. Klokov, and V. S. Bagaev, Instrum. Exp. Theor. 52 (1), 110 (2009).

    Article  Google Scholar 

  20. D. J. Robbins, L. T. Canham, S. J. Barnett, A. D. Pitt, and P. Calcott, J. Appl. Phys. 71, (1992).

    Google Scholar 

  21. L. C. Lenchyshyn, M. L. W. Thewalt, and D. C. Houghton, Phys. Rev. B: Condens. Matter 47, 16655 (1993).

    Article  ADS  Google Scholar 

  22. T. M. Burbaev, E. A. Bobrik, V. A. Kurbatov, M. M. Rzaev, N. N. Sibel’din, V. A. Tsvetkov, and F. Schäffler, JETP Lett. 85 (7), 331 (2007).

    Article  ADS  Google Scholar 

  23. T. M. Burbaev, D. S. Kozyrev, N. N. Sibel’din, and M. L. Skorikov, JETP Lett. 98 (12), 823 (2013).

    Article  ADS  Google Scholar 

  24. V. S. Bagaev, V. S. Krivobok, S. N. Nikolaev, A. V. Novikov, E. E. Onishchenko, and M. L. Skorikov, Phys. Rev. B: Condens. Matter 82, 1153131 (2010).

    Article  Google Scholar 

  25. V. D. Kulakovskii and V. B. Timofeev, Solid State Commun. 33, 1187 (1980).

    Article  ADS  Google Scholar 

  26. J. Christen and D. Bimberg, Phys. Rev. B: Condens. Matter 42, 7213 (1990).

    Article  ADS  Google Scholar 

  27. R. Schorer, G. Abstreiter, S. de Gironcoli, E. Molinari, H. Kibbel, and H. Presting, Phys. Rev. B: Condens. Matter 49, 5406 (1994).

    Article  ADS  Google Scholar 

  28. C. Klincshirn, Phys. Status Solidi B 71, 547 (1975).

    Article  ADS  Google Scholar 

  29. H. Buttner, Phys. Status Solidi 42, 775 (1970).

    Article  Google Scholar 

  30. V. S. Bagaev, V. V. Zaitsev, Yu. V. Klevkov, and V. S. Krivobok, Phys. Solid State 47 (10), 1827 (2005).

    Article  ADS  Google Scholar 

  31. Excitons, Ed. by E. I. Rashba and M. D. Sturge (North- Holland, Amsterdam, The Netherlands, 1982; Nauka, Moscow, 1985).

    Google Scholar 

  32. D. Snoke, Solid State Commun. 146, 73 (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Krivobok.

Additional information

Original Russian Text © V.S. Bagaev, E.T. Davletov, V.S. Krivobok, S.N. Nikolaev, A.V. Novikov, E.E. Onishchenko, A.A. Pruchkina, M.L. Skorikov, 2015, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2015, Vol. 148, No. 6, pp. 1198–1214.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagaev, V.S., Davletov, E.T., Krivobok, V.S. et al. Multiparticle states and the factors that complicate an experimental observation of the quantum coherence in the exciton gas of SiGe/Si quantum wells. J. Exp. Theor. Phys. 121, 1052–1066 (2015). https://doi.org/10.1134/S106377611512002X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377611512002X

Keywords

Navigation