Skip to main content
Log in

Preablation electron and lattice dynamics on the silicon surface excited by a femtosecond laser pulse

  • Atoms, Molecules, Optics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The study of the time-resolved optical reflection from the silicon surface excited by single femtosecond laser pulses below and near the melting threshold reveals fast (less than 10 ps) Auger recombination of a photogenerated electron–hole plasma with simultaneous energy transfer to the lattice. The acoustic relaxation of the excited surface layer indicates (according to reported data) a characteristic depth of 150 nm of the introduction of the laser radiation energy, which is related to direct linear laser radiation absorption in the photoexcited material due to a decrease in the energy bandgap. The surface temperature, which is probed at a time delay of about 100 ps from the reflection thermomodulation of probe radiation and the integrated continuous thermal emission from the surface, increases with the laser fluence and, thus, favors a nonlinear increase in the fluorescence of sublimated silicon atoms. The surface temperature estimated near the picosecond melting threshold demonstrates a substantial (20%) overheating of the material with respect to the equilibrium melting temperature. Above the melting threshold, the delay of formation of the material melt decreases rapidly (from several tens of picoseconds to several fractions of a picosecond) when the laser fluence and, correspondingly, the surface temperature increase. In the times of acoustic relaxation of the absorbing layer and even later, the time modulation of the optical reflectivity of the material demonstrates acoustic reverberations with an increasing period, which are related to the formation of melt nuclei in the material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Ahn, D. J. Hwang, H. K. Park, and C. P. Grigoropoulos, Appl. Phys. A: Mater. Sci. Process. 108 113 (2012).

    Article  ADS  Google Scholar 

  2. T. Sarnet, J. E. Carey, and E. Mazur, AIP Conf. Proc. 1464, 219 (2012).

    Article  ADS  Google Scholar 

  3. A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, Phys. Rev. B: Condens. Matter 82, 045404 (2010).

    Article  ADS  Google Scholar 

  4. F. Aieta, M. A. Kats, P. Genevet, and F. Capasso, Science (Washington) 347, 1342 (2015).

    Article  ADS  Google Scholar 

  5. Yu-T. Lin, N. Mangan, S. Marbach, T. M. Schneider, G. Deng, S. Zhou, M. P. Brenner, and E. Mazur, Appl. Phys. Lett. 106, 062105 (2015).

    Article  ADS  Google Scholar 

  6. A. A. Ionin, S. I. Kudryashov, S. V. Makarov, N. N. Mel’nik, A. A. Rudenko, P. N. Saltuganov, L. V. Seleznev, D. V. Sinitsyn, I. A. Timkin, and R. A. Khmel’nitskii, JETP Lett. 100 (1), 55 (2014).

    Article  ADS  Google Scholar 

  7. A. A. Ionin, S. I. Kudryashov, L. V. Seleznev, D. V. Sinitsyn, A. F. Bunkin, V. N. Lednev, and S. M. Pershin, J. Exp. Theor. Phys. 116 (3), 347 (2013).

    Article  ADS  Google Scholar 

  8. M. C. Downer and C. V. Shank, Phys. Rev. Lett. 56, 761 (1986).

    Article  ADS  Google Scholar 

  9. A. Cavalleri, K. Sokolowski-Tinten, J. Bialkowski, M. Schreiner, and D. von der Linde, J. Appl. Phys. 85, 3301 (1999).

    Article  ADS  Google Scholar 

  10. L. A. Lompre, J. M. Liu, H. Kurz, and N. Bloembergen, Appl. Phys. Lett. 43, 168 (1983).

    Article  ADS  Google Scholar 

  11. P. Baeri, S. U. Campisano, E. Rimini, and J. P. Zhang, Appl. Phys. Lett. 45, 398 (1984).

    Article  ADS  Google Scholar 

  12. Z. Li, H. Zhang, Z. Shen, and X. Ni, J. Appl. Phys. 114, 033104 (2013).

    Article  ADS  Google Scholar 

  13. C. V. Shank, R. Yen, and C. Hirlimann, Phys. Rev. Lett. 50, 454 (1983).

    Article  ADS  Google Scholar 

  14. D. Hulin, M. Combescot, J. Bok, A. Migus, J. Y. Vinet, and A. Antonetti, Phys. Rev. Lett. 52, 1998 (1984).

    Article  ADS  Google Scholar 

  15. E. N. Glezer, Y. Siegal, L. Huang, and E. Mazur, Phys. Rev. B: Condens. Matter 51, 6959 (1995).

    Article  ADS  Google Scholar 

  16. K. Sokolowski-Tinten and D. von der Linde, Phys. Rev. B: Condens. Matter 61, 2648 (2000).

    Article  ADS  Google Scholar 

  17. S. I. Kudryashov and V. I. Emel’yanov, JETP Lett. 73 (5), 228 (2001).

    Article  ADS  Google Scholar 

  18. S. I. Kudryashov and V. I. Emel’yanov, J. Exp. Theor. Phys. 94 (1), 94 (2002).

    Article  ADS  Google Scholar 

  19. A. A. Ionin, S. I. Kudryashov, S. V. Makarov, P. N. Saltuganov, L. V. Seleznev, D. V. Sinitsyn, and A. R. Sharipov, JETP Lett. 96 (6), 375 (2012).

    Article  ADS  Google Scholar 

  20. P. A. Danilov, A. A. Ionin, S. I. Kudryashov, S. V.Makarov, A. A. Rudenko, P. N. Saltuganov, L. V. Seleznev, V. I. Yurovskikh, D. A. Zayarny, and T. Apostolova, J. Exp. Theor. Phys. 120 (6), 946 (2015).

    Article  ADS  Google Scholar 

  21. C. V. Shank, R. Yen, and C. Hirlimann, Phys. Rev. Lett. 51, 900 (1983).

    Article  ADS  Google Scholar 

  22. H. W. K. Tom, G. D. Aumiller, and C. H. Brito-Cruz, Phys. Rev. Lett. 60, 1438 (1988).

    Article  ADS  Google Scholar 

  23. P. Saeta, J.-K. Wang, Y. Siegal, N. Bloembergen, and E. Mazur, Phys. Rev. Lett. 67, 1023 (1991).

    Article  ADS  Google Scholar 

  24. K. Sokolowski-Tinten, H. Schulz, J. Bialkowski, and D. von der Linde, Appl. Phys. A 53, 227 (1991).

    Article  ADS  Google Scholar 

  25. R. Nüske, C. von Korff Schmising, A. Jurgilaitis, H. Enquist, H. Navirian, P. Sondhauss, and J. Larsson, Rev. Sci. Instrum. 81, 013106 (2010).

    Article  ADS  Google Scholar 

  26. M. Beye, F. Sorgenfrei, W. F. Schlotter, W. Wurth, and A. Föhlisch, Proc. Natl. Acad. Sci. USA 107, 16772 (2010).

    Article  ADS  Google Scholar 

  27. M. Harb, R. Ernstorfer, C. T. Hebeisen, G. Sciani, W. Peng, T. Dartigalongue, M. A. Eriksson, M. G. Lagally, S. G. Kruglik, and R. J. D. Miller, Phys. Rev. Lett. 100, 155504 (2008).

    Article  ADS  Google Scholar 

  28. M. C. Downer, R. L. Fork, and C. V. Shank, J. Opt. Soc. Am. B 2, 595 (1985).

    Article  ADS  Google Scholar 

  29. D. von der Linde, K. Sokolowski-Tinten, and J. Bialkowski, Appl. Surf. Sci. 109–110, 1 (1997).

    Article  Google Scholar 

  30. A. A. Ionin, S. I. Kudryashov, S. V. Makarov, P. N. Saltuganov, L. V. Seleznev, D. V. Sinitsyn, V. N. Lednev, and S. M. Pershin, JETP Lett. 101 (5), 308 (2015).

    Article  ADS  Google Scholar 

  31. C. T. Hebeisen, G. Sciaini, M. Harb, R. Ernstorfer, S. G. Kruglik, and R. J. D. Miller, Phys. Rev. B: Condens. Matter 78, 081403R (2008)

    Article  ADS  Google Scholar 

  32. H. Park and J. M. Zuo, Appl. Phys. Lett. 94, 251103 (2009).

    Article  ADS  Google Scholar 

  33. B. C. Gundrum, R. S. Averback, and D. G. Cahill, Appl. Phys. Lett. 91, 011906 (2007).

    Article  ADS  Google Scholar 

  34. V. Heine and J. A. van Vechten, Phys. Rev. B: Solid State 13, 1622 (1976).

    Article  ADS  Google Scholar 

  35. R. Biswas and V. Ambeokar, Phys. Rev. B: Condens. Matter 26, 1980 (1982).

    Article  ADS  Google Scholar 

  36. M. Combescot and J. Bok, Phys. Rev. Lett. 48, 1413 (1982).

    Article  ADS  Google Scholar 

  37. Yu. V. Kopaev, V. V. Menyailenko, and S. N. Molotkov, Sov. Phys. Solid State 27 (11), 1979 (1985).

    Google Scholar 

  38. P. Stampfli and K. H. Bennemann, Phys. Rev. B: Condens. Matter 42, 7163 (1990).

    Article  ADS  Google Scholar 

  39. S. V. Govorkov, V. I. Emel’yanov, and I. L. Shumay, Laser Phys. 2, 77 (1992).

    Google Scholar 

  40. S. Das Sarma and J. R. Senna, Phys. Rev. B: Condens. Matter 49, 2443 (1994).

    Article  ADS  Google Scholar 

  41. V. Recoules, J. J. Clerouin, G. Zerath, P. M. Anglade, and S. Mazevet, Phys. Rev. Lett. 96, 055503 (2006).

    Article  ADS  Google Scholar 

  42. P. S. Komarov, S. I. Ashitkov, A. V. Ovchinnikov, D.S.Sitnikov, M. E. Veysman, P. R. Levashov, M. E. Povarnitsyn, M. B. Agranat, N. E. Andreev, and K. V. Khishchenko, J. Phys. A: Math. Theor. 42, 214057 (2009).

    Article  ADS  Google Scholar 

  43. D. J. Hwang, C. P. Grigoropoulos, and T. Y. Choi, J. Appl. Phys. 99, 083101 (2006).

    Article  ADS  Google Scholar 

  44. S. Lee, D. Yang, and S. Nikumb, Appl. Surf. Sci. 254, 2996 (2008).

    Article  ADS  Google Scholar 

  45. A. Couairon and A. Mysyrowicz, Phys. Rep. 441, 47 (2007).

    Article  ADS  Google Scholar 

  46. Handbook of Optical Constants of Solids, Ed. by E. D. Palik Academic, Orlando, Florida, United States, 1998).

  47. http://physicsnistgov/PhysRefData/ASD/lines formhtml.

  48. S. I. Kudryashov, M. Kandyla, C. Roeser, and E. Mazur, Phys. Rev. B: Condens. Matter 75, 085207 (2007).

    Article  ADS  Google Scholar 

  49. T. Apostolova, A. A. Ionin, S. I. Kudryashov, L. V. Seleznev, and D. V. Sinitsyn, Opt. Eng. 51, 121808 (2012).

    Article  ADS  Google Scholar 

  50. P. Y. Yu and M. Cardona, Fundamentals of Semiconductors: Physics and Materials Properties (Springer, Berlin 1996; Nauka, Moscow, 2002).

    MATH  Google Scholar 

  51. S. A. Akhmanov, V. I. Emel’yanov, N. I. Koroteev, and V. N. Seminogov, Sov. Phys.—Usp. 28 (12), 1084 (1985).

    Article  ADS  Google Scholar 

  52. I. S. Grigoriev and E. Z. Meilikhov, Handbook of Physical Quantities (Energoatomizdat, Moscow, 1991: CRC Press, Boca Raton, Florida, United States, 1996).

    Google Scholar 

  53. A. Dargys and J. Kundrotas, Handbook on Physical Properties of Ge, Si, GaAs, and InP (Science and Encyclopedia Publishers, Vilnius, Lithuania, 1994).

    Google Scholar 

  54. D. S. Ivanov and L. V. Zhigilei, Phys. Rev. B: Condens. Matter 68, 064114 (2003).

    Article  ADS  Google Scholar 

  55. S. L. Johnson, P. A. Heimann, A. M. Lindenberg, H. O. Jeschke, M. E. Garcia, Z. Chang, R. W. Lee, J. J. Rehr, and R. W. Falcone, Phys. Rev. Lett. 91, 157403 (2003).

    Article  ADS  Google Scholar 

  56. K. M. Shvarev, B. A. Baum, and N. V. Gel’d, Sov. Phys. Solid State 16 (11), 2111 (1974).

    Google Scholar 

  57. J. Bonse, Appl. Phys. A: Mater. Sci. Process. 84, 63 (2006).

    Article  ADS  Google Scholar 

  58. R. McCluney, Introduction to Radiometry and Photometry (Artech House, Boston, Massachusetts, United States, 1994).

    Google Scholar 

  59. S. I. Kudryashov and V. I. Emel’yanov, JETP Lett. 73 (9), 487 (2001).

    Article  ADS  Google Scholar 

  60. S. L. Johnson, P. A. Heimann, A. G. MacPhee, A. M. Lindenberg, O. R. Monteiro, Z. Chang, R. W. Lee, and R. W. Falcone, Phys. Rev. Lett. 94, 057407 (2005).

    Article  ADS  Google Scholar 

  61. P. G. Debenedetti, Metastable Liquids: Concepts and Principles (Princeton University Press, Princeton, New Jersey, United States, 1996).

    Google Scholar 

  62. A. A. Ionin, S. I. Kudryashov, S. V. Makarov, L. V. Seleznev, and D. V. Sinitsyn, Appl. Phys. A: Mater. Sci. Process. 117, 1757 (2014).

    Article  ADS  Google Scholar 

  63. A. A. Ionin, S. I. Kudryashov, S. V. Makarov, N. N. Mel’nik, P. N. Saltuganov, L. V. Seleznev, and D. V. Sinitsyn, Laser Physics Letters 12, 075301 (2015).

    Article  ADS  Google Scholar 

  64. J. M. Liu, R. Yen, H. Kurz, and N. Bloembergen, Appl. Phys. Lett. 39, 755 (1981).

    Article  ADS  Google Scholar 

  65. M. Harb, R. Ernstorfer, T. Dartigalongue, C. T. Hebeisen, R. E. Jordan, and R. J. D. Miller, J. Phys. Chem. B 110, 25308 (2006).

    Article  Google Scholar 

  66. L. A. Golovan, V. Yu. Timoshenko, and P. K. Kashkarov, Phys.—Usp. 50 (6), 595 (2007).

    Article  ADS  Google Scholar 

  67. E. Yu. Tonkov, Phase Transformations of Elements under High Pressure (Metallurgiya, Moscow, 1988; CRC Press, Boca Raton, Florida, United States, 2004).

    Google Scholar 

  68. N. M. Keita and S. Steinemann, Phys. Lett. A 72A, 153 (1979).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Kudryashov.

Additional information

Original Russian Text © A.A. Ionin, S.I. Kudryashov, L.V. Seleznev, D.V. Sinitsyn, V.N. Lednev, S.M. Pershin, 2015, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2015, Vol. 148, No. 5, pp. 846–856.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ionin, A.A., Kudryashov, S.I., Seleznev, L.V. et al. Preablation electron and lattice dynamics on the silicon surface excited by a femtosecond laser pulse. J. Exp. Theor. Phys. 121, 737–746 (2015). https://doi.org/10.1134/S106377611511014X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377611511014X

Keywords

Navigation