Skip to main content
Log in

Characteristics of atomic vibrational motion in a one-component defective crystal

  • Structure of Matter and Quantum Chemistry
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Vibrations of atoms in a defective argon crystal are considered. Frequencies are calculated in the harmonic approximation and Mie and Einstein approximations. The vibrations are calculated for a set of local clusters differing in the position of a vacancy at different distances from a selected atom. Probabilities for these clusters are calculated within a quasichemical approximation of the lattice gas model. It is shown that when combined contributions from lateral interactions and vibrational motions are allowed for in the free crystal energy, there is an increase in the lattice constant upon a rise in temperature in all approximations. It is found that the frequencies calculated using the Mie model become closer to the frequency distribution in the harmonic approximation as the degree of crystal defectiveness increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Leibfried, Microscopic Theory of Mechanical and Thermal Properties of Crystals, in Handbuch der Physik, Ed. by S. Flügge (Springer-Verlag, Berlin, 1963; GIFML, Moscow, 1963), Vol. 7, Ch. 1.

    Google Scholar 

  2. G. Leibfried and V. Ludwig, Theory of Anharmonic Effects in Crystals, Solid State Phys. 12, 275 (1961).

    Article  CAS  Google Scholar 

  3. L. Girifalco, Statistical Physics of Materials (Wiley, New York, 1973).

    Google Scholar 

  4. A. M. Kosevich, Principles of the Mechanics of the Crystal Lattice (Nauka, Moscow, 1972) [in Russian].

    Google Scholar 

  5. Ch. Kittel, Introduction to Solid State Physics (Wiley, Chapman Hall, New York, London, 1953).

    Google Scholar 

  6. H. Mehrer, Diffusion in Solids: Fundamentals, Methods, Materials, Diffusion-Controlled Processes, Springer Series in Solid-State Sciences (Springer, New York, 2007; Intellekt, Dolgoprudnyi, 2010), Vol. 155.

    Google Scholar 

  7. P. W. Dean, in Computational Methods in Solid State Theory (Mir, Moscow, 1975), p. 209 [in Russian].

    Google Scholar 

  8. A. Maradudin, Solid State Phys. 18, 273 (1966).

    Article  CAS  Google Scholar 

  9. N. M. Plakida, Statistical Physics and Quantum Field Theory (Nauka, Moscow, 1973), p. 205 [in Russian].

    Google Scholar 

  10. Yu. K. Tovbin, Russ. J. Phys. Chem. A 80, 1554 (2006).

    Article  CAS  Google Scholar 

  11. Yu. K. Tovbin, Zh. Fiz. Khim. 87(7) (2013, in press).

    Google Scholar 

  12. N. N. Bogolyubov, Quasiaverage in Problems of Statistical Mechanics (J. Inst. Nucl. Res., Dubna, 1963) [in Russian].

    Google Scholar 

  13. Yu. K. Tovbin, Theory of Physicochemical Processes at the Gas-Solid Interface (Nauka, Moscow, 1990) [in Russian].

    Google Scholar 

  14. T. Hill, Statistical Mechanics; Principles and Selected Applications (Dover, New York, 1987; Inostr. Liter., Moscow, 1960).

    Google Scholar 

  15. I. P. Bazarov, Statistical Theory of the Crystalline State (Mosk. Gos. Univ., Moscow, 1972) [in Russian].

    Google Scholar 

  16. Yu. K. Tovbin, Molecular Theory of Adsorption in Porous Bodies (Fizmatlit, Moscow, 2012) [in Russian].

    Google Scholar 

  17. E. A. Moelwin-Hughes, Physical Chemistry, Vol. 1 (Pergamon, London, New York, Paris, 1961; Inostr. Liter., Moscow, 1962, p. 287).

    Google Scholar 

  18. Yu. K. Tovbin, Khim. Fiz. 21(1), 83 (2002).

    CAS  Google Scholar 

  19. Yu. K. Tovbin, Zh. Fiz. Khim. 64, 1395 (1992).

    Google Scholar 

  20. S. Ozgen, V. Kuzucu, and O. Adiguzel, Erc. Unv. Fen Bil. Derg. 12, 60 (1996).

    Google Scholar 

  21. O. G. Peterson, D. N. Batchelder, and R. O. Simmons, Phys. Rev. 150, 703 (1966).

    Article  CAS  Google Scholar 

  22. K. B. Tolpygo and E. P. Troitskaya, Sov. Phys. Solid State 16, 514 (1974).

    Google Scholar 

  23. G. B. Taggert, Phys. Rev. B 19, 2895 (1979).

    Article  Google Scholar 

  24. Z. Rac and M. F. Collins, Phys. Rev. B 20, 229 (1980).

    Google Scholar 

  25. J. D. da Silva, J. Brandao, and A. J. C. Varandas, J. Chem. Soc., Faraday Trans. 85, 1851 (1989).

    Article  Google Scholar 

  26. J. P. P. Ramalho, A. B. Rabinovich, D. V. Yeremich, and Yu. K. Tovbin, Appl. Surf. Sci. 252, 529 (2005).

    Article  CAS  Google Scholar 

  27. B. M. Axilrod and E. Teller, J. Chem. Phys. 11, 299 (1943).

    Article  CAS  Google Scholar 

  28. I. G. Kaplan, Theory of Molecular Interactions (Nauka, Moscow, 1982; Elsevier, New York, 1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. K. Tovbin.

Additional information

Original Russian Text © Yu.K. Tovbin, S.V. Titov, 2013, published in Zhurnal Fizicheskoi Khimii, 2013, Vol. 87, No. 10, pp. 1709–1714.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tovbin, Y.K., Titov, S.V. Characteristics of atomic vibrational motion in a one-component defective crystal. Russ. J. Phys. Chem. 87, 1696–1701 (2013). https://doi.org/10.1134/S0036024413090240

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024413090240

Keywords

Navigation