Skip to main content
Log in

Genetic structure of the introduced and local populations of Rhizobioum leguminosarum in plant-soil systems

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Comparative study of Rhizobium leguminosarum populations formed under the conditions of the Srednii Island (White Sea) demonstrated the introduced clover rhizobia (R. l. bv. trifolii) to be more variable than the aboriginal vetch/vetchling rhizobia (R. l. bv. viceae) in the chromosomal IGS locus, while being less variable in the plasmid-located symbiotic genes nodD and nifH. The analysis of these genes revealed the most pronounced differences between the clover and vetch/vetchling rhizobia populations. These differences, together with the results of ERIC-fingerprinting, indicated that the evolution of the clover rhizobia was mainly linked with the adaptation to local soil environment, and the evolution of the vetch/vetchling rhizobia, to the adaptation to various species of the host plants. High panmixia of R. leguminosarum population suggests its evolution to be based on the combinatory variability associated with the transfer of Sym-plasmids between R. l. bv. trifolii and R. l. bv. viceae, as well as with genomic rearrangements in the resulting recombinants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bena, G., Lyet, A., Huguet, T., and Olivieri, I., Medicago-Sinorhizobium Symbiotic Specificity Evolution and the Geographic Expansion of Medicago, J. Evol. Biol., 2005, vol. 18, pp. 1547–1558.

    Article  PubMed  CAS  Google Scholar 

  2. Provorov, N.A. and Vorobyov, N.I., Evolution of Symbiotic Bacteria in “Plant-Soil” Systems: Interplay of Molecular and Population Mechanisms, in Progr. Environ. Microbiol., Kim, M.-B., Ed., New York: Nova Sci., 2008, pp. 11–67.

    Google Scholar 

  3. Laguerre, G., Lauvrier, P., Allard, M.R., and Amarger, N., Compatibility of Rhizobial Genotypes within Natural Populations of Rhizobium leguminosarum biovar viceae for Nodulation of Host Legumes, Appl. Environ. Microbiol., 2003, vol. 69, pp. 2276–2283.

    Article  PubMed  CAS  Google Scholar 

  4. Brom, S., Girard, L., Garcia-de los Santos, A., Sanjuan-Pinilla, J.M., Olivares, J., and Sanjuan, J., Conservation of Plasmid-Encoded Traits among Bean-Nodulating Rhizobium Species, Appl. Environ. Microbiol., 2002, vol. 68, pp. 2555–2561.

    Article  PubMed  CAS  Google Scholar 

  5. Sullivan, J.T., Trzebiatowski, J.R., Cruickshank, R.W., Gouzy, J., Brown, S.D., Elliot, R.M., Fleetwood, D.J., McCalum, N.G., Rossbach, U., Stuart, G.S., Weaver, J.E., Webby, R.J., de Bruijn, F., and Ronson, C., Comparative Sequence Analysis of the Symbiosis Island of Mesorhizobium loti Strain R7A, J. Bacteriol., 2002, vol. 184, pp. 3086–3095.

    Article  PubMed  CAS  Google Scholar 

  6. Nandasena, K.G., O’Hara, G.W., Tiwari, R.P., and Howieson, J.G., Rapid in situ Evolution of Nodulating Strains for Biserrula pelecinus L. through Lateral Transfer of a Symbiosis Island from the Original Mesorhizobial Inoculants, Appl. Environ. Microbiol., 2006, vol. 72, pp. 7365–7367.

    Article  PubMed  CAS  Google Scholar 

  7. Sanjuan, J., Herrera-Cervera, J.A., Sanjuan-Pinilla, J.M., Munoz, S., Nogales, J., and Olivares, J., Horizontal Gene Transfer in Rhizobia: Ecological Implications, in Nitrogen Fixation: From Molecules to Crop Productivity, Pedrosa, F., Ed., Dordrecht: Kluwer Acad., 2000, pp. 593–594.

    Google Scholar 

  8. Provorov, N.A. and Vorob’ev, N.I., Role of Horizontal Gene Transfer in the Evolution of Root Nodule Bacteria Directed by Host Plants, Usp. Sovrem. Biol., 2010, vol. 130, no. 4, pp. 336–345.

    Google Scholar 

  9. Dorosinskii, L.M., Metodicheskie rekomendatsii dlya kursov povysheniya kvalifikatsii nauchnykh sotrudnikov po sel’skokhozyaistvennoi mikrobiologii. Metody issledovanii kluben’kovykh bakterii (Recommendations for Researchers’ Extension Courses in Agricultural Microbiology. Methods for Investigation of Root Nodule Bacteria), Leningrad: VNIISKhM, 1981.

    Google Scholar 

  10. Laguerre, G., Mavingui, P., Allard, M.R., Charnay, M.P., Lauvrier, P., Mazurier, S.I., Rigottier-Gois, L., and Amarger, N., Typing of Rhizobia by PCR DNA Finge-printing and PCR-Restriction Lengths Polymorphism Analysis of Chromosomal and Symbiotic Gene Regions: Application to Rhizobium leguminosarum and Its Different Biovars, Appl. Environ. Microbiol., 1996, vol. 62, pp. 2029–2036.

    PubMed  CAS  Google Scholar 

  11. Sambrook, J., Fritsch, E.F., and Maniatis, T., Molecular Cloning: A Laboratory Manual. 2nd ed., 1989, New York: Cold Spring Harbor Lab. Press.

    Google Scholar 

  12. Nei, M., Estimation of Average Heterozygosity and Genetic Distance from a Small Number of Individuals, Genetics, 1978, vol. 89, pp. 583–590.

    PubMed  CAS  Google Scholar 

  13. Selander, R.K., Caugant, D.A., Ochman, H., Musser, J.M., Gilmour, M.N., and Whittam, T.S., Methods of Multilocus Enzyme Electrophoresis for Bacterial Population Genetics and Systematics, Appl. Environ. Microbiol., 1986, vol. 51, pp. 873–884.

    PubMed  CAS  Google Scholar 

  14. Begon, M., Harper, J.L., and Townsend, C.R., Ecology. Individuals, Populations and Communities, Oxford: Blackwell, 1986, vol. 1.

    Google Scholar 

  15. Versalovic, J., Koeuth, T., and Lupski, J.R., Distribution of Repetitive DNA Sequences in Eubacteria and Application to Fingerprinting of Bacterial Genomes, Nucleic Acid Res., 1991, vol. 19, pp. 6823–6831.

    Article  PubMed  CAS  Google Scholar 

  16. Schlaman, H.R.M., Phillips, D.A., and Kondorosi, E., Genetic Organization and Transcriptional Regulation of Rhizobial Nodulation Genes, in The Rhizobiaceae. Molecular Biology of Model Plant-Associated Bacteria, Spaink, H.P., Kondorosi, A., and Hooykaas, P.J.J., Eds., Dordrecht: Kluwer, 1998, pp. 361–386.

    Google Scholar 

  17. Young, J.P.W., Crossman, L.C., Johnston, A.W.B., Thomson, N.R., Ghazoui, Z.F., Hull, K.H., Wexler, M., Curson, A.R.J., Todd, J.D., Poole, P.S., Mauchline, T.H., East, A.K., Quail, M.A., Churcher, C., Arrowsmith, C., Cherevach, I., Chillingworth, T., Clarke, K., Cronin, A., Davis, P., Fraser, A., Hance, Z., Hauser, H., Jagels, K., Moule, S., Mungall, K., Noebertczak, H., Rabbinowitsch, E., Sanders, M., Simmonds, M., Whitehead, S., and Parkhill, J., The Genome of Rhizobium leguminosarum Has Recognizable Core and Accessory Components, Genome Biol., 2006, vol. 7, pp. 34–41.

    Article  Google Scholar 

  18. Wang, C.L., Beringer, J.E., and Hirsch, P.R., Host Plant Effects on Inter-Specific Hybrids of Rhizobium leguminosarum biovars viceae and trifolii, J. Gen. Microbiol., 1986, vol. 132, pp. 2063–2070.

    CAS  Google Scholar 

  19. Kaminski P., Batut J., and Boistard P., A Survey of Symbiotic Nitrogen Fixation by Rhizobia, in The Rhizobiaceae. Molecular Biology of Model Plant-Associated Bacteria, Spaink, H.P., Kondorosi, A., and Hooykaas, P.J.J., Eds., Dordrecht: Kluwer, 1998, pp. 431–460.

    Google Scholar 

  20. Provorov, N.A., Interaction between Leguminous Taxonomy and Specificity of Their Interaction with Root Nodule Bacteria, Bot. Zh., 1992, vol. 77, no. 8, pp. 21–32.

    Google Scholar 

  21. Lie, T.A., Göktan D., Engin M., Pijnenborg J., and Anlarsal E., Co-Evolution of the Legume-Rhizobium Association, Plant Soil, 1987, vol. 100, pp. 171–181.

    Article  Google Scholar 

  22. Mutch, L.A. and Young, J.P.W., Diversity and Specificity of Rhizobium leguminosarum biovar viceae on Wild and Cultivated Legumes, Molec. Ecol., 2004, vol. 13, pp. 2435–2444.

    Article  CAS  Google Scholar 

  23. MacLean, A.M., Finan, T.M., and Sadowsky, M.J., Genomes of Symbiotic Nitrogen-Fixing Bacteria of Legumes, Plant Physiol., 2007, vol. 144, pp. 615–622.

    Article  PubMed  CAS  Google Scholar 

  24. Eardly, B.D., Wang, F.-S., Whittam, T.S., and Selander, R.K., Species Limits in Rhizobium Populations That Nodulate the Common Bean (Phaseolus vulgaris), Appl. Environ. Microbiol., 1995, vol. 61, pp. 507–512.

    PubMed  CAS  Google Scholar 

  25. Wernegreen, J.J., Harding, E.E., and Riley, M.A., Rhizobium Gone Native: Unexpected Plasmid Stability of Indigenous Rhizobium leguminosarum, Proc. Natl. Acad. Sci. U. S. A., 1997, vol. 94, pp. 5483–5488.

    Article  PubMed  CAS  Google Scholar 

  26. Kurchak, O.N., Provorov, N.A., and Simarov, B.V., Comparison of the Adaptive Potential for Rhizobium leguminosarum bv. viceae Nodule Bacterial Populations Isolated in Natural Ecosystems and Agrocenoses, Russ. J. Genet., 2011, vol. 47, no. 4, pp. 425–431.

    Article  CAS  Google Scholar 

  27. Provorov, N.A. and Vorob’ev, N.I., Evolutionary Genetics of Nodule Bacteria: Molecular and Population Aspects, Russ. J. Genet., 2000, vol. 36, no. 12, pp. 1323–1335.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Provorov.

Additional information

Original Russian Text © N.A. Provorov, E.E. Andronov, O.P. Onishchuk, O.N. Kurchak, E.P. Chizhevskaya, 2012, published in Mikrobiologiya, 2012, Vol. 81, No. 2, pp. 244–253.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Provorov, N.A., Andronov, E.E., Onishchuk, O.P. et al. Genetic structure of the introduced and local populations of Rhizobioum leguminosarum in plant-soil systems. Microbiology 81, 224–232 (2012). https://doi.org/10.1134/S0026261712020129

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261712020129

Keywords

Navigation