Skip to main content
Log in

Comparison of the adaptive potential for Rhizobium leguminosarum bv. viceae nodule bacterial populations isolated in natural ecosystems and agrocenoses

  • Microbial Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Polymorphism analysis was performed in Rhizobium leguminosarum bv. viceae populations isolated from geographically distant regions of Ukraine and Middle Asia. Examination of cultural, biochemical, and symbiotic traits revealed interpopulation differences, which were attributed to the difference in conditions between natural ecosystems and agrocenoses. Vetch has high species diversity and is not cultivated in Middle Asia, and the corresponding rhizobial population displayed higher genetic diversity and higher polymorphism of adaptive traits ensuring saprophytic development in soil and the rhizosphere, including melanin synthesis (35%) and active exopolysaccharide production (90%). Strains of the Ukrainian population had a lower exopolysaccharide production (10%), did not produce melanin, had higher herbicide resistance, and utilized glucose and succinate (main components of plant root exudation) as carbon sources. Strains capable of efficient symbiosis with Vicia villosa Roth. had a higher frequency in the Middle Asian than in the Ukrainian population, especially among strains isolated from soil (80 and 35%, respectively). In addition, strains of the Middle Asian population better competed for nodulation. It was assumed that the formation of rhizobial populations in vetch cultivation regions (Ukraine) is aimed at adaptation to ectosymbiotic (rhizospheric) interactions with plants and anthropogenic stress factors, while strains of the vetch original center (Middle Asia) are mostly adapted to the endosymbiotic interaction and to natural edaphic stress factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sessitsch, A., Howieson, J.G., Perret, X., et al., Advances in Rhizobium Research, Crit. Rev. Plant Sci., 2002, vol. 21, no. 4, pp. 323–378.

    Article  CAS  Google Scholar 

  2. Young, J.P.W., Rhizobium Population Genetics: Enzyme Polymorphism in Isolates from Peas, Clover, Beans and Lucerne Grown at the Same Site, J. Gen. Microbiol., 1985, vol. 131, pp. 2399–2408.

    CAS  Google Scholar 

  3. Hynes, M.F. and O’Connell, M.P., Host Plant Effect on Competition among Strains of Rhizobium leguminosarum, Can. J. Microbiol., 1990, vol. 35, pp. 864–869.

    Article  Google Scholar 

  4. Laguerre, G., Mazurier, S.I., and Amarger, N., Plasmid Profiles and Restriction Length Polymorphism of Rhizobium leguminosarum bv. viceae in Field Populations, FEMS Microbiol. Ecol., 1992, vol. 101, pp. 17–26.

    Article  CAS  Google Scholar 

  5. Laguerre, G., Geniaux, E., Mazurier, S.I., et al., Conformity and Diversity among Field Isolates of Rhizobium leguminosarum bv. viceae, bv. trifolii and bv. phaseoli Revealed by DNA Hybridization Using Chromosome and Plasmid Probes, Canad. J. Microbiol., 1993, vol. 39, pp. 412–419.

    Article  CAS  Google Scholar 

  6. Provorov, N.A. and Vorobyov, N.I., Simulation of Plant-Bacteria Co-Evolution in the Mutually Beneficial Symbiosis, Ecol. Genet., 2008, vol. 6, no. 2, pp. 35–48.

    Google Scholar 

  7. Mutch, L.A. and Young, J.P.W., Diversity and Specificity of Rhizobium leguminosarum Biovar viciae on Wild and Cultivated Legumes, Mol. Ecol., 2004, vol. 13, pp. 2435–2444.

    Article  PubMed  CAS  Google Scholar 

  8. Seguin, P., Graham, P.H., Sheaffer, C.C., et al., Genetic Diversity of Rhizobia Nodulating Trifolium ambiguum in North America, Can. J. Microbiol., 2001, vol. 47, pp. 81–85.

    Article  PubMed  CAS  Google Scholar 

  9. Kurchak, O.N., Provorov, N.A., and Simarov, B.V., Different Vicia L. Species Symbiosis Effectiveness with Nodule Bacteria, Rast. Resursy, 1995, vol. 31, no. 1, pp. 88–93.

    Google Scholar 

  10. Vavilov, N.I., Tsentry proiskhozhdeniya kul’turnykh rastenii (Centers of Origin of Cultivated Plants), Leningrad: Nauka, 1926.

    Google Scholar 

  11. Vavilov, N.I., Proiskhozhdenie i geografiya kul’turnykh rastenii (Origin and Geography of Cultivated Plants), Leningrad: Nauka, 1987.

    Google Scholar 

  12. Simarov, B.V., Geneticheskie metody selektsii kluben’kovykh bakterii: Metodicheskie rekomendatsii (Genetic Methods of Nodule Bacteria Selection: Methodic Recommendations), Leningrad, 1984.

  13. Eckhardt, T., A Rapid Method for the Identification of Plasmid Deoxyribonucleic Acid in Bacteria, Plasmid, 1978, no. 1, pp. 584–588.

  14. Rosenberg, C., Casse-Delbart, F., Pusha, I., et al., Megaplasmid in the Plant-Associated Bacteria Rhizobium meliloti and Pseudomonas solanaceum, J. Bacteriol., 1982, no. 150, pp. 402–406.

  15. Beringer, J.E., R-Factor Transfer in Rhizobium leguminosarum, J. Gen. Genet., 1974, vol. 84, pp. 188–198.

    CAS  Google Scholar 

  16. Keller, M., Muller, P., Simon, R., et al., Rhizobium meliloti Genes for Exopolysaccharide Synthesis and Nodule Infection Located on Megaplasmid 2 Are Actively Transcribed during Symbiosis, Mol. Plant-Microbe Interact., 1988, vol. 1, no. 7, pp. 267–274.

    Article  CAS  Google Scholar 

  17. Pareek, R.P. and Sidhu, B.S., Uncoupling of Phosphorylation in Rhizobium spp. by 2.4D and Tificide-80, Ind. J. Microbiol., 1978, vol. 18, no. 2, pp. 97–100.

    Google Scholar 

  18. Amarger, N., Selection of Rhizobium Strains on Their Competitive Ability for Nodulation, Soil Biol. Biochem., 1981, vol. 13, no. 3, pp. 481–486.

    Article  Google Scholar 

  19. Fesenko, A.N., Orlova, I.F., Provorov, N.A., et al., Direct and Indirect Methods for Testing Competitiveness of Pea Nodule Bacteria, Priklad. Biokhim. Mikrobiol., 1996, vol. 32, no. 3, pp. 352–355.

    CAS  Google Scholar 

  20. Sharypova, L.A. and Simarov, B.V., Method for Comparison of Competitive Ability of Effective Rhizobium meliloti Strains, Trudy Vsesoyuznogo Nauchno-Issledovatelskogo Instituta Selsko-Khozaystvennoy Mikrobiologii (Collection of Scientific Papers of All-Union Agricultural Microbiology Research Institute), 1985, vol. 55, pp. 85–90.

    Google Scholar 

  21. Lakin, G.F., Biometriya (Biometry), Moscow: Vysshaya Shkola, 1980.

    Google Scholar 

  22. Nei, M., Estimation of Average Heterozygosity and Genetic Distance from a Small Number of Individuals, Genetics, 1978, vol. 89, pp. 583–590.

    PubMed  CAS  Google Scholar 

  23. Palmer, K.M. and Young, J.P.W., Higher Diversity of Rhizobium leguminosarum Biovar viciae Populations in Arable Soils than in Grass Soils, Appl. Environ. Microbiol., 2000, vol. 66, no. 6, pp. 2445–2450.

    Article  PubMed  CAS  Google Scholar 

  24. Corich, V., Giacomini, A., and Carlot, M., Comparative Strain Typing of Rhizobium leguminosarum bv. viciae Natural Populations, Can. J. Microbiol., 2001, vol. 47, pp. 580–584.

    Article  PubMed  CAS  Google Scholar 

  25. Spaink, H.P., Kondorosi, A., and Hooykaas, P.J.J., The Rhizobiaceae: Molecular Biology of Model Plant-Associated Bacteria, Dordrecht: Kluwer, 1998.

    Google Scholar 

  26. Kuiper, I., Kravchenko, L.V., Bloemberg, G.V., et al., Pseudomonas putida Strain PCL 1444, Selected for Efficient Root Colonization and Naphthalene Degradation, Effectively Utilizes Root Exudates Components, Mol. Plant-Microbe Interact., 2002, vol. 15, pp. 734–741.

    Article  PubMed  CAS  Google Scholar 

  27. Mishustin, E.N. and Shil’nikova, V.K., Kluben’kovye bakterii i inokulyatsionnyi protsess (Nodule Bacteria and Inoculation Process), Moscow: Nauka, 1973.

    Google Scholar 

  28. Serova, A.A. and Makarov, A.I., Vozdelyvanie zernobobovykh i krupyanykh kul’tur v akleolinskoi oblasti: Rekomendatsii (Cultivation of Legume and Grain Crops in Akleolinsk Oblast: Recomendations) Orel: Vserossiyskiy Nauchno-Issledovatelskiy Institut 2008.

    Google Scholar 

  29. Young, J.P.W., Phylogenetic Classification of Nitrogen-Fixing Organisms, Biological Nitrogen Fixation, Stacey, G., Burris, R.H., and Evans, H.J., Eds., London: Chapman and Hall, 1992.

    Google Scholar 

  30. Lie, T.A., Goektan, D., Engin, M., et al., Co-Evolution of the Legume-Rhizobium Association, Plant Soil, 1987, vol. 100, pp. 171–181.

    Article  Google Scholar 

  31. Sullivan, J.T., Patrick, H.N., Lowther, W.L., et al., Nodulating Strains of Rhizobium loti Arise through Chromosomal Symbiotic Gene Transfer in the Environment, Proc. Nat. Acad. Sci. USA, 1995, vol. 92, pp. 8985–8989.

    Article  PubMed  CAS  Google Scholar 

  32. Wernegreen, J.J., Harding, E.E., and Riley, M.A., Rhizobium Gene Native: Unexpected Plasmid Stability of Indigenous Rhizobium leguminosarum, Proc. Natl. Acad. Sci. USA, 1997, vol. 94, pp. 5483–5488.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. N. Kurchak.

Additional information

Original Russian Text ¢ O.N. Kurchak, N.A. Provorov, B.V. Simarov, 2011, published in Genetika, 2011, Vol. 47, No. 4, pp. 484–491.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurchak, O.N., Provorov, N.A. & Simarov, B.V. Comparison of the adaptive potential for Rhizobium leguminosarum bv. viceae nodule bacterial populations isolated in natural ecosystems and agrocenoses. Russ J Genet 47, 425–431 (2011). https://doi.org/10.1134/S1022795411040089

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795411040089

Keywords

Navigation