Skip to main content
Log in

Formation of photoluminescence centers during annealing of SiO2 layers implanted with Ge ions

  • Electronic and Optical Properties of Semiconductors
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Photoluminescence (PL), Raman scattering, and the Rutherford backscattering of α-particles were used to study the formation of the centers of radiative-recombination emission in the visible region of the spectrum on annealing of the SiO2 layers implanted with Ge ions. It was found that the Ge-containing centers were formed in the as-implanted layers, whereas the stages of increase and decrease in the intensities of PL bands were observed following an increase in the annealing temperature to 800°C. The diffusion-related redistribution of Ge atoms was observed only when the annealing temperatures were as high as 1000°C and was accompanied by formation of Ge nanocrystals. However, this did not give rise to intense PL as distinct from the case of Si-enriched SiO2 layers subjected to the same treatment. It is assumed that, prior to the onset of Ge diffusion, the formation of PL centers occurs via completion of direct bonds between the neighboring excess atoms, which gives rise to the dominant violet PL band (similar to the PL of O vacancies in SiO2) and a low-intensity long-wavelength emission from various Ge-containing complexes. The subsequent formation of centers of PL with λm∼570 nm as a result of anneals at temperatures below 800°C is explained by agglomeration of bonded Ge atoms with formation of compact nanocrystalline precipitates. The absence of intense PL following the high-temperature anneals is believed to be caused by irregularities in the interfaces between the formed Ge nanoc-rystals and the SiO2 matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Shimizu-Iwayama, K. Fujita, S. Nakao, et al., J. Appl. Phys. 75, 7779 (1994).

    Article  ADS  Google Scholar 

  2. H. A. Atwater, K. V. Scheglov, S. S. Wong, et al., Mater. Res. Soc. Symp. Proc. 316, 409 (1994).

    Google Scholar 

  3. P. Mutti, G. Ghislott, S. Bertoni, et al., Appl. Phys. Lett. 66, 851 (1995).

    Article  ADS  Google Scholar 

  4. T. Shimizu-Iwayama, Y. Terao, A. Kamiya, et al., Nucl. Instrum. Methods Phys. Res., Sect. B 112, 214 (1996).

    Article  ADS  Google Scholar 

  5. G. A. Kachurin, I. E. Tyschenko, K. S. Zhuravlev, et al., Nucl. Instrum. Methods Phys. Res., Sect. B 112, 571 (1997).

    Google Scholar 

  6. G. A. Kachurin, I. E. Tyschenko, W. Skorupa, et al., Fiz. Tekh. Poluprovodn. 31, 730 (1997).

    Google Scholar 

  7. Y. Maeda, N. Tsukamoto, Y. Masumoto, et al., Appl. Phys. Lett. 59, 3168 (1991).

    ADS  Google Scholar 

  8. Y. Kanemitsu, H. Uto, Y. Masumoto, et al., Appl. Phys. Lett. 61, 2187 (1992).

    ADS  Google Scholar 

  9. M. Fujii, S. Hayashi, and K. Yamamoto, Jpn. J. Appl. Phys. 30, 687 (1991).

    Google Scholar 

  10. S. Hayashi, J. Kanazawa, M. Kataoka, et al., Z. Phys. D: At., Mol. Clusters 26, 144 (1993).

    Google Scholar 

  11. J. Maeda, Phys. Rev. B: Condens. Matter 51, 1658 (1995).

    ADS  Google Scholar 

  12. C. M. Yang, K. V. Scheglov, K. J. Vahala, et al., Nucl. Instrum. Methods Phys. Res., Sect. B 106, 433 (1995).

    ADS  Google Scholar 

  13. A. K. Dutta, Appl. Phys. Lett. 68, 1189 (1996).

    Article  ADS  Google Scholar 

  14. K. S. Min, K. V. Scheglov, C. M. Yang, et al., Appl. Phys. Lett. 68, 2511 (1996).

    Article  ADS  Google Scholar 

  15. M. Zacharias and P. M. Fauchet, Appl. Phys. Lett. 71, 380 (1997).

    Article  ADS  Google Scholar 

  16. L.-S. Liao, X.-M. Bao, X.-Q. Zheng, et al., Appl. Phys. Lett. 68, 850 (1996).

    Article  ADS  Google Scholar 

  17. G. A. Kachurin, L. Rebohle, W. Skorupa, et al., Fiz. Tekh. Poluprovodn. 32, 439 (1998).

    Google Scholar 

  18. R. Tohmon, J. Shimogaichi, H. Mizuno, et al., Phys. Rev. Lett. 62, 1388 (1989).

    Article  ADS  Google Scholar 

  19. H. Nishikawa, T. Shiroyama, R. Nakamura, et al., Phys. Rev B: Condens. Matter 45, 586 (1992).

    ADS  Google Scholar 

  20. H. Hosono, Y. Abe, D. L. Kinser, et al., Phys. Rev. B: Condens. Matter 46, 11445 (1982).

    Google Scholar 

  21. M. Gallagher and U. Osterberg, Appl. Phys. Lett. 63, 2987 (1993).

    Article  ADS  Google Scholar 

  22. L. A. Nesbit, Appl. Phys. Lett. 46, 38 (1985).

    Article  ADS  Google Scholar 

  23. I. M. Lifshits and V. V. Slezov, Zh. Éksp. Teor. Fiz. 35, 479 (1958).

    Google Scholar 

  24. J. G. Zhu, C. W. White, L. D. Budai, et al., J. Appl. Phys. 78, 4386 (1995).

    ADS  Google Scholar 

  25. S. Hayashi, M. Ito, H. Kanamori, et al., Solid State Commun. 44, 75 (1983).

    Google Scholar 

  26. V. A. Gaisler, I. G. Neizvestnyi, M. P. Sinyukov, et al., Pis’ma Zh. Éksp. Teor. Fiz. 45, 347 (1987) [JETP Lett. 45, 441 (1987)].

    Google Scholar 

  27. Z. Iqbal, S. Veprek, A. P. Webb, et al., Solid State Commun. 37, 993 (1981).

    Article  Google Scholar 

  28. J.-Y. Zhang, X.-L. Wu, and X.-M. Bao, Appl. Phys. Lett. 71, 2505 (1997).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika i Tekhnika Poluprovodnikov, Vol. 34, No. 1, 2000, pp. 23–27.

Original Russian Text Copyright © 2000 by Kachurin, Rebohle, Tyschenko, Volodin, Voelskow, Skorupa, Froeb.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kachurin, G.A., Rebohle, L., Tyschenko, I.E. et al. Formation of photoluminescence centers during annealing of SiO2 layers implanted with Ge ions. Semiconductors 34, 21–26 (2000). https://doi.org/10.1134/1.1187944

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1187944

Keywords

Navigation