Poster + Paper
27 August 2022 Radiance values inside lunar caves and lava tubes
Author Affiliations +
Conference Poster
Abstract
There is currently a growing interest for the in-situ robotic and human exploration of the Moon’s surface and subsurface. In particular, several mission concepts foresee the exploration of lunar caves and underground structures like e.g. the lava tubes, (i.e. conduit formed by flowing lava from a volcanic vent that moves beneath the hardened surface of a lava flow) and other depressed morphologies such as permanently shadowed craters which could present in situ resources such as water ice. Given the limited onboard resources of these missions and extreme illumination conditions ranging from sunlight to complete darkness, the cameras might be capable of operating without the support of any artificial illumination system. This paper studies the radiance properties of a set of different lunar cave pits as illuminated uniquely by the sunlight for different Sun elevations above the Moon horizon and permanently shadowed craters such as Shackleton’s interior. This is as an endmember for complete darkness of extreme importance because it could be a cold trap for volatiles and a potential future human exploration target. The simulations are carried out using the OpticStudio ray tracing software and a Lambertian scattering model of the cave pit walls. The radiance maps within the caves can be used by the scientific community to estimate the typical Signal to Noise Ratio (SNR) of the required observations with optical cameras deployed on the lunar surface. This is accomplished both for directly illuminated, penumbra and umbra regions of the cave pit. We believe that the proposed investigations are of wide interest for the future missions to the Moon and its robotic and manned exploration.
© (2022) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
G. Rodeghiero, C. Pernechele, M. Munari, R. Pozzobon, M. Pajola, I. Di Antonio, A. Lucchetti, M. Massironi, E. Simioni, D. Borrmann, F. Maurelli, A. Nüchter, and A. P. Rossi "Radiance values inside lunar caves and lava tubes", Proc. SPIE 12180, Space Telescopes and Instrumentation 2022: Optical, Infrared, and Millimeter Wave, 121803B (27 August 2022); https://doi.org/10.1117/12.2628901
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Sun

Scattering

Ray tracing

Signal to noise ratio

Cameras

Light sources

MATLAB

Back to Top