Loading [a11y]/accessibility-menu.js
Optimal Inversion of the Anscombe Transformation in Low-Count Poisson Image Denoising | IEEE Journals & Magazine | IEEE Xplore

Optimal Inversion of the Anscombe Transformation in Low-Count Poisson Image Denoising


Abstract:

The removal of Poisson noise is often performed through the following three-step procedure. First, the noise variance is stabilized by applying the Anscombe root transfor...Show More

Abstract:

The removal of Poisson noise is often performed through the following three-step procedure. First, the noise variance is stabilized by applying the Anscombe root transformation to the data, producing a signal in which the noise can be treated as additive Gaussian with unitary variance. Second, the noise is removed using a conventional denoising algorithm for additive white Gaussian noise. Third, an inverse transformation is applied to the denoised signal, obtaining the estimate of the signal of interest. The choice of the proper inverse transformation is crucial in order to minimize the bias error which arises when the nonlinear forward transformation is applied. We introduce optimal inverses for the Anscombe transformation, in particular the exact unbiased inverse, a maximum likelihood (ML) inverse, and a more sophisticated minimum mean square error (MMSE) inverse. We then present an experimental analysis using a few state-of-the-art denoising algorithms and show that the estimation can be consistently improved by applying the exact unbiased inverse, particularly at the low-count regime. This results in a very efficient filtering solution that is competitive with some of the best existing methods for Poisson image denoising.
Published in: IEEE Transactions on Image Processing ( Volume: 20, Issue: 1, January 2011)
Page(s): 99 - 109
Date of Publication: 08 July 2010

ISSN Information:

PubMed ID: 20615809

Contact IEEE to Subscribe

References

References is not available for this document.