organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Methyl 2-hy­dr­oxy-4-iodo­benzoate

crossmark logo

a730 Natural Sciences Complex, Buffalo, NY 14260-3000, USA, and b771 Natural Sciences Complex, Buffalo, NY 14260, USA
*Correspondence e-mail: jbb6@buffalo.edu

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 24 April 2024; accepted 30 April 2024; online 17 May 2024)

The structure of the title compound, C8H7IO3, at 90 K has monoclinic (P21/c) symmetry. The extended structure is layered and displays inter­molecular and intra­molecular hydrogen bonding arising from the same OH group.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

2-Hy­droxy­benzoic acid methyl ester (C8H8O3), commonly known as methyl salicylate, and its derivatives have been shown to display biological effects such as anti-inflammatory, anti-fungal, and process signaling (Yoon et al., 2019[Yoon, M., Kim, M., Kim, M. H., Kang, J.-G., Sohn, Y. & Kim, I. T. (2019). Inorg. Chim. Acta, 495, 119008.]; Li et al., 2016[Li, J., Yin, Y., Wang, L., Liang, P., Li, M., Liu, X., Wu, L. & Yang, H. (2016). Molecules, 21, 1544.]; Park et al., 2007[Park, S.-W., Kaimoyo, E., Kumar, D., Mosher, S. & Klessig, D. F. (2007). Science, 318, 113-116.]). It can also be found in various foods (Duthie & Wood, 2011[Duthie, G. G. & Wood, A. D. (2011). Food Funct. 2, 515-520.]). The title compound, 2-hy­droxy-4-iodo­benzoic acid methyl ester (methyl 4-iodo­salicylate, C8H7IO3) allows for an effective way of incorporating the said methyl salicylates within larger organic mol­ecules, using such methodologies as McClure protocols (Franchi et al., 2010[Franchi, L., Rinaldi, M., Vignaroli, G., Innitzer, A., Radi, M. & Botta, M. (2010). Synthesis, pp. 3927-3933.]; McClure et al., 2001[McClure, M. S., Glover, B., McSorley, E., Millar, A., Osterhout, M. H. & Roschangar, F. (2001). Org. Lett. 3, 1677-1680.]), Stille (Yoon et al., 2019[Yoon, M., Kim, M., Kim, M. H., Kang, J.-G., Sohn, Y. & Kim, I. T. (2019). Inorg. Chim. Acta, 495, 119008.]; Stille, 1986[Stille, J. K. (1986). Angew. Chem. Int. Ed. Engl. 25, 508-524.]) and Suzuki–Miyaura reactions (Fracaroli et al., 2014[Fracaroli, A. M., Furukawa, H., Suzuki, M., Dodd, M., Okajima, S., Gándara, F., Reimer, J. A. & Yaghi, O. M. (2014). J. Am. Chem. Soc. 136, 8863-8866.]; Miyaura et al., 1979[Miyaura, N., Yamada, K. & Suzuki, A. (1979). Tetrahedron Lett. 20, 3437-3440.]), which take advantage of the iodine atom at the 4-position of the aromatic ring for the formation of carbon–carbon bonds. The iodine atom is also capable of forming supra­molecular synthons, which may be useful for crystal engineering (Desiraju, 1995[Desiraju, G. R. (1995). Angew. Chem. Int. Ed. Engl. 34, 2311-2327.]; Cherukuvada et al., 2016[Cherukuvada, S., Kaur, R. & Guru Row, T. N. (2016). CrystEngComm, 18, 8528-8555.]; Mitchell et al., 2023[Mitchell, T. B., Zhang, X., Jerozal, R. T., Chen, Y.-S., Wang, S. & Benedict, J. B. (2023). IUCrJ, 10, 694-699.]).

At 90 K the title compound displays monoclinic (P21/c) symmetry with one mol­ecule in the asymmetric unit (Fig. 1[link]). Inter­molecular hydrogen bonding inter­actions occur between the hy­droxy groups of one mol­ecule and the carbonyl oxygen atom of the methyl ester of an adjacent mol­ecule to form a centrosymmetric dimeric pair (Table 1[link], Fig. 2[link]) with H⋯O = 2.53 (4) Å. An O3—H3⋯O2 intra­molecular hydrogen bond also exists with an H⋯O distance of 2.05 (4) Å. The C5⋯C8 [3.326 (3) Å] and O3⋯H1C (2.51 Å) inter­actions provide the only short contacts between the stacks of offset ([\overline{1}]02) parallel sheets, which make up the crystal (Fig. 3[link]). These sheets, in turn, contain the inversion-generated hydrogen-bonded dimers (Fig. 2[link]). The non-hydrogen atoms of the mol­ecule are essentially coplanar with no displacement from the mean mol­ecular plane greater than 0.132 Å (Fig. 4[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O2 0.70 (4) 2.05 (4) 2.670 (3) 149 (4)
O3—H3⋯O2i 0.70 (4) 2.53 (4) 3.087 (2) 139 (4)
Symmetry code: (i) [-x+2, -y+1, -z+2].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound showing 50% displacement ellipsoids. The intra­molecular hydrogen bond is indicated by a red dashed line.
[Figure 2]
Figure 2
The dimer of title compound showing intra- and inter­molecular hydrogen bonds depicted with blue dashed lines with corresponding O⋯H distances for each O—H⋯O inter­action.
[Figure 3]
Figure 3
Packing diagram viewed perpendicular to ([\overline{1}]02).
[Figure 4]
Figure 4
Packing diagram viewed along b-axis and parallel to ([\overline{1}]02).

Crystallization

Methyl 4-iodo­salicylate (32.8 mg, 0.118 mmol) was added to a 20 ml scintillation vial to which benzene (∼2 ml) was added, and the vial shaken until the compound dissolved. The resulting solution was then left undisturbed, lightly capped, and in the dark for one week to allow for crystal formation while the solvent slowly evaporated.

Refinement

Crystal data, data collection, and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C8H7IO3
Mr 278.04
Crystal system, space group Monoclinic, P21/c
Temperature (K) 90
a, b, c (Å) 4.3286 (8), 21.334 (4), 9.2941 (16)
β (°) 93.744 (4)
V3) 856.4 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 3.70
Crystal size (mm) 0.80 × 0.20 × 0.02
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.564, 0.747
No. of measured, independent and observed [I > 2σ(I)] reflections 23320, 3651, 3315
Rint 0.049
(sin θ/λ)max−1) 0.809
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.057, 1.11
No. of reflections 3651
No. of parameters 114
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.27, −1.92
Computer programs: APEX2 and SAINT V8.40B (Bruker, 2016[Bruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Methyl 2-hydroxy-4-iodobenzoate top
Crystal data top
C8H7IO3F(000) = 528
Mr = 278.04Dx = 2.156 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 4.3286 (8) ÅCell parameters from 6811 reflections
b = 21.334 (4) Åθ = 2.9–34.1°
c = 9.2941 (16) ŵ = 3.70 mm1
β = 93.744 (4)°T = 90 K
V = 856.4 (3) Å3Plate, pale yellow
Z = 40.80 × 0.20 × 0.02 mm
Data collection top
Bruker APEXII CCD
diffractometer
3315 reflections with I > 2σ(I)
φ and ω scansRint = 0.049
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 35.1°, θmin = 2.4°
Tmin = 0.564, Tmax = 0.747h = 66
23320 measured reflectionsk = 3334
3651 independent reflectionsl = 1415
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.030H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.057 w = 1/[σ2(Fo2) + 1.660P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max = 0.001
3651 reflectionsΔρmax = 1.27 e Å3
114 parametersΔρmin = 1.92 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The O-bound H atom was located in a difference map and its position was freely refined. The C-bound H atoms were geometrically placed (C—H = 0.95–0.98 Å) and refined as riding atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.05964 (3)0.25795 (2)0.54095 (2)0.01430 (4)
O30.7859 (4)0.39459 (9)0.91310 (18)0.0170 (3)
O10.4603 (4)0.56516 (8)0.72915 (18)0.0180 (3)
O20.7790 (4)0.51960 (9)0.89865 (19)0.0212 (4)
C60.2313 (5)0.34266 (10)0.6295 (2)0.0127 (4)
C70.4516 (5)0.34172 (10)0.7453 (2)0.0128 (4)
H70.5225070.3029650.7855680.015*
C80.5675 (5)0.39821 (10)0.8018 (2)0.0121 (3)
C10.5827 (6)0.62513 (11)0.7783 (3)0.0203 (5)
H1A0.4997800.6583000.7138230.030*
H1B0.8090600.6245530.7778970.030*
H1C0.5222780.6331510.8763940.030*
C50.1189 (5)0.39860 (11)0.5688 (2)0.0161 (4)
H50.0335540.3985220.4905040.019*
C30.4577 (5)0.45534 (10)0.7425 (2)0.0123 (4)
C20.5823 (5)0.51534 (11)0.7990 (2)0.0144 (4)
C40.2359 (5)0.45406 (10)0.6259 (2)0.0156 (4)
H40.1637440.4925730.5848570.019*
H30.836 (8)0.4252 (17)0.929 (4)0.025 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.01408 (6)0.01099 (7)0.01764 (7)0.00031 (5)0.00056 (4)0.00134 (5)
O30.0173 (8)0.0173 (8)0.0153 (7)0.0008 (6)0.0061 (6)0.0004 (6)
O10.0241 (8)0.0104 (7)0.0188 (8)0.0031 (6)0.0048 (6)0.0007 (6)
O20.0210 (8)0.0204 (9)0.0211 (8)0.0015 (6)0.0083 (6)0.0031 (6)
C60.0114 (8)0.0128 (9)0.0138 (9)0.0012 (7)0.0009 (7)0.0017 (7)
C70.0128 (9)0.0120 (9)0.0136 (9)0.0008 (7)0.0011 (7)0.0006 (7)
C80.0103 (8)0.0155 (9)0.0105 (8)0.0020 (7)0.0003 (6)0.0010 (7)
C10.0282 (12)0.0114 (10)0.0211 (11)0.0062 (8)0.0005 (9)0.0021 (8)
C50.0178 (10)0.0137 (10)0.0158 (9)0.0004 (7)0.0061 (7)0.0005 (7)
C30.0132 (9)0.0108 (9)0.0128 (9)0.0003 (7)0.0010 (7)0.0004 (7)
C20.0140 (9)0.0152 (10)0.0138 (9)0.0006 (7)0.0007 (7)0.0011 (7)
C40.0179 (10)0.0104 (9)0.0177 (10)0.0002 (7)0.0053 (8)0.0012 (7)
Geometric parameters (Å, º) top
I1—C62.101 (2)C8—C31.407 (3)
O3—C81.357 (3)C1—H1A0.9800
O3—H30.70 (4)C1—H1B0.9800
O1—C11.447 (3)C1—H1C0.9800
O1—C21.336 (3)C5—H50.9500
O2—C21.220 (3)C5—C41.379 (3)
C6—C71.391 (3)C3—C21.472 (3)
C6—C51.394 (3)C3—C41.400 (3)
C7—H70.9500C4—H40.9500
C7—C81.395 (3)
C8—O3—H3107 (3)H1A—C1—H1C109.5
C2—O1—C1115.15 (18)H1B—C1—H1C109.5
C7—C6—I1119.85 (16)C6—C5—H5121.0
C7—C6—C5121.9 (2)C4—C5—C6118.0 (2)
C5—C6—I1118.20 (15)C4—C5—H5121.0
C6—C7—H7120.3C8—C3—C2120.44 (19)
C6—C7—C8119.4 (2)C4—C3—C8118.89 (19)
C8—C7—H7120.3C4—C3—C2120.63 (19)
O3—C8—C7116.94 (19)O1—C2—C3113.23 (18)
O3—C8—C3123.3 (2)O2—C2—O1122.9 (2)
C7—C8—C3119.80 (19)O2—C2—C3123.8 (2)
O1—C1—H1A109.5C5—C4—C3122.0 (2)
O1—C1—H1B109.5C5—C4—H4119.0
O1—C1—H1C109.5C3—C4—H4119.0
H1A—C1—H1B109.5
I1—C6—C7—C8178.99 (15)C8—C3—C2—O1178.4 (2)
I1—C6—C5—C4179.01 (17)C8—C3—C2—O21.0 (3)
O3—C8—C3—C21.0 (3)C8—C3—C4—C50.9 (3)
O3—C8—C3—C4178.8 (2)C1—O1—C2—O21.2 (3)
C6—C7—C8—O3178.90 (19)C1—O1—C2—C3178.26 (19)
C6—C7—C8—C30.9 (3)C5—C6—C7—C80.8 (3)
C6—C5—C4—C30.9 (4)C2—C3—C4—C5178.8 (2)
C7—C6—C5—C40.8 (3)C4—C3—C2—O10.6 (3)
C7—C8—C3—C2178.8 (2)C4—C3—C2—O2178.8 (2)
C7—C8—C3—C40.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O20.70 (4)2.05 (4)2.670 (3)149 (4)
O3—H3···O2i0.70 (4)2.53 (4)3.087 (2)139 (4)
Symmetry code: (i) x+2, y+1, z+2.
 

Footnotes

Both authors contributed equally to this work.

Funding information

Funding for this research was provided by: National Science Foundation (award No. DMR-2003932).

References

First citationBruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCherukuvada, S., Kaur, R. & Guru Row, T. N. (2016). CrystEngComm, 18, 8528–8555.  Web of Science CrossRef CAS Google Scholar
First citationDesiraju, G. R. (1995). Angew. Chem. Int. Ed. Engl. 34, 2311–2327.  CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDuthie, G. G. & Wood, A. D. (2011). Food Funct. 2, 515–520.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFracaroli, A. M., Furukawa, H., Suzuki, M., Dodd, M., Okajima, S., Gándara, F., Reimer, J. A. & Yaghi, O. M. (2014). J. Am. Chem. Soc. 136, 8863–8866.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationFranchi, L., Rinaldi, M., Vignaroli, G., Innitzer, A., Radi, M. & Botta, M. (2010). Synthesis, pp. 3927–3933.  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLi, J., Yin, Y., Wang, L., Liang, P., Li, M., Liu, X., Wu, L. & Yang, H. (2016). Molecules, 21, 1544.  Web of Science CrossRef PubMed Google Scholar
First citationMcClure, M. S., Glover, B., McSorley, E., Millar, A., Osterhout, M. H. & Roschangar, F. (2001). Org. Lett. 3, 1677–1680.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMitchell, T. B., Zhang, X., Jerozal, R. T., Chen, Y.-S., Wang, S. & Benedict, J. B. (2023). IUCrJ, 10, 694–699.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationMiyaura, N., Yamada, K. & Suzuki, A. (1979). Tetrahedron Lett. 20, 3437–3440.  CrossRef Web of Science Google Scholar
First citationPark, S.-W., Kaimoyo, E., Kumar, D., Mosher, S. & Klessig, D. F. (2007). Science, 318, 113–116.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStille, J. K. (1986). Angew. Chem. Int. Ed. Engl. 25, 508–524.  CrossRef Web of Science Google Scholar
First citationYoon, M., Kim, M., Kim, M. H., Kang, J.-G., Sohn, Y. & Kim, I. T. (2019). Inorg. Chim. Acta, 495, 119008.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146