research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and void analysis of tris­­(2-amino-1-methyl­benzimidazolium) hexa­kis­(nitrato-κ2O,O′)lanthanate(III)

crossmark logo

aUzbekistan-Japan Innovation Center of Youth, University street 2B, Tashkent 100095, Uzbekistan, bNational University of Uzbekistan named after Mirzo Ulugbek, University street 4, Tashkent 100174, Uzbekistan, and cState Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
*Correspondence e-mail: b.ruziyeva@nuu.uz, daminova_sh@mail.ru

Edited by M. Weil, Vienna University of Technology, Austria (Received 16 March 2022; accepted 12 May 2022; online 20 May 2022)

The organic–inorganic complex salt, (C8H10N3)3[La(NO3)6], comprises a network of N-protonated 2-amino-1-methyl­benzimidazolium cations and hexa­kis­(nitrato)lanthanate(III) anions. The LaIII atom is twelve-coordinate within a distorted icosa­hedral environment. In the unit cell, each pair of the LaIII atoms lie nearly on one of the crystallographic glide planes. In the crystal structure, there are several N—H⋯O hydrogen-bonding inter­actions between the cations and terminal oxygen atoms from the nitrate moieties of the [La(NO3)6]3– anion. Additional weak C—H⋯O hydrogen bonds between the cations and anions consolidate the three-dimensional arrangement of the structure. A packing analysis was performed to check the strength of the crystal packing.

1. Chemical context

Layered lanthanide complexes in the solid state or in solution often represent an one-dimensional transition-metal self-assembly (Chen et al., 2017[Chen, W., Tang, X., Dou, W., Wang, B., Guo, L., Ju, Z. & Liu, W. (2017). Chem. Eur. J. 23, 9804-9811.]), frequently incorporated within functional groups from various ligand systems. These complexes not only provide excellent opportunities to widen the research scope of rare-earth compounds, but also feature a novel nuclear secondary building unit (SBU), forming porous and intrinsically electrically conductive structures (Skorupskii & Dincă, 2020[Skorupskii, G. & Dincă, M. (2020). J. Am. Chem. Soc. 142, 6920-6924.]). Although lanthanide ions have characteristic electronic configurations with their complexes being ideal candidates for new crystal structures and potential applications in superconductivity, magnetism, optics, electronics and catalysis (Eliseeva & Bünzli, 2010[Eliseeva, S. V. & Bünzli, J. G. (2010). Chem. Soc. Rev. 39, 189-227.]; Woodruff et al., 2013[Woodruff, D. N., Winpenny, R. E. & Layfield, R. A. (2013). Chem. Rev. 113, 5110-5148.]), lanthanide complexes, especially polynuclear clusters, are not well understood (Barry et al., 2016[Barry, D. E., Caffrey, D. F. & Gunnlaugsson, T. (2016). Chem. Soc. Rev. 45, 3244-3274.]). Some reasons for this are the uncontrollable polynuclear arrangement of lanthanide complexes and the nature of lanthanide ions, with their high coordination numbers, kinetic instabilities, uncertain preferred stereochemistry, and the variable nature of their coordination spheres.

In this context, originally trying to isolate polynuclear mixed-ligand lanthanum complexes, we have isolated the title organic–inorganic complex lanthanum salt, 3C8H10N3+·[La(NO3)6]3-, tris­(2-amino-1-methyl­benz­im­id­az­olium)hexa­kis­(nitrato-O,O′)-lanthanate(III), (1), and report here its crystal structure and void analysis.

[Scheme 1]

2. Structural commentary

The LaIII atom in (1) (Fig. 1[link]) is twelve-coordinate by O atoms of the nitrato ligands with La—O bond lengths varying between 2.612 (2) and 2.707 (2) Å (Table 1[link]). The nitrato ligands in the resulting [La(NO3)6]3– anion surround the LaIII atom in a highly distorted icosa­hedral environment. Bond lengths and angles in the [La(NO3)6]3– anion show no significant deviations from those of other structures where the LaIII atom is coordinated by nitrate anions and/or water mol­ecules (Drew et al., 1998[Drew, M. G. B., Hudson, M. J., Iveson, P. B., Russell, M. L., Liljenzin, J.-O., Sklberg, M., Spjuth, L. & Madic, C. (1998). J. Chem. Soc. Dalton Trans. pp. 2973-2980.]; Fowkes & Harrison, 2006[Fowkes, A. & Harrison, W. T. A. (2006). Acta Cryst. E62, m1301-m1303.]; Skelton et al., 2019[Skelton, B. W., Kokozay, V. N., Vassilyeva, O. Yu. & Buvaylo, E. A. (2019). Private communication (refcode: GOWVIA). CCDC, Cambridge, England.]; Polyzou et al., 2012[Polyzou, C. D., Nikolaou, H., Papatriantafyllopoulou, C., Psycharis, V., Terzis, A., Raptopoulou, C. P., Escuer, A. & Perlepes, S. P. (2012). Dalton Trans. 41, 13755-13764.]; Bezzubov et al., 2017[Bezzubov, S. I., Bilyalova, A. A., Zharinova, I. S., Lavrova, M. A., Kiselev, Y. M. & Dolzhenko, V. D. (2017). Russ. J. Inorg. Chem. 62, 1197-1201.]).

Table 1
Selected geometric parameters (Å, °)

La1—O1 2.646 (2) La1—O14 2.6551 (19)
La1—O2 2.707 (2) La1—O16 2.674 (2)
La1—O4 2.650 (2) La1—O17 2.662 (2)
La1—O5 2.661 (2) N7—C6 1.387 (4)
La1—O7 2.699 (2) N7—C7 1.335 (3)
La1—O8 2.6469 (18) N8—C1 1.395 (3)
La1—O10 2.6520 (18) N8—C7 1.341 (4)
La1—O11 2.631 (2) N8—C8 1.455 (3)
La1—O13 2.612 (2) N9—C7 1.313 (4)
       
O1—La1—O2 47.45 (6) O11—La1—O10 47.98 (6)
O4—La1—O5 47.94 (6) O13—La1—O14 48.26 (6)
O8—La1—O7 47.69 (6) O17—La1—O16 47.80 (6)
[Figure 1]
Figure 1
The mol­ecular structure of the [La(NO3)6]3– anion and surrounding C8H10N3+ cations in (1), showing the atom-labeling scheme. Atomic displacement parameters are drawn at the 30% probability level and H atoms are shown at small spheres of arbitrary radius. Hydrogen bonds are shown as blue dotted lines. [Symmetry codes: (i) x, −y + [{1\over 2}], z – 1/2; (ii) x − 1, −y + [{1\over 2}], z – 1/2.]

In the unit-cell of (1), each pair of LaIII atoms nearly lie on each of the crystallographic glide planes [with deviations from the mean planes of 0.00 (7)–0.02 (1) Å]. The inter­section between the LaIII atoms lying on neighboring glide planes at distances of 12.676 and 14.212 Å, respectively, passes through the center of inversion of the unit-cell.

3. Supra­molecular features

In the crystal structure of (1) the nitrate groups coordinate bidentately to the LaIII atom. The corresponding La—O—N—O planes are close to coplanar, i.e. deviate slightly from 180°. As illustrated in Fig. 2[link], adjacent benzimidazolium mol­ecules stabilize the [La(NO3)6]3– anion by N—H⋯O inter­actions (Fig. 1[link], Table 2[link]). This arrangement is consolidated by slipped ππ inter­actions between neighbouring benzimidazolium cations [Cg5⋯Cg7 = 3.4515 (1) and Cg6⋯Cg9 = 3.5038 (1) Å with slippages of 0.649 and 0.219; Cg5 and Cg7 are the centroids of the C9–C14 and N13/C22/C17/N14/C23 rings, Cg6 and Cg9 are the centroids of the N10/C14–C9/N11/C15 and N13/C22–C17/N14/C23 rings; Fig. 2[link]]. In the structure of (1), apart from the N—H⋯O inter­actions, there are two weak C—H⋯O inter­actions (Table 2[link]) between adjacent [La(NO3)6]3– anions and C8H10N3+ cations (Fig. 3[link]). The three-dimensional network of (1) is assembled from all these inter­molecular contacts and inter­actions (Fig. 4[link]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C21—H21⋯O17 0.93 2.64 3.530 (5) 161
C24i—H24Ci⋯O10 0.96 2.52 3.348 (5) 138
N7—H7⋯O1 0.86 2.01 2.819 (3) 157
N10—H4A⋯O4 0.86 2.05 2.889 (3) 164
N12—H6A⋯O6 0.86 2.10 2.944 (3) 165
N13—H7⋯O7 0.86 2.11 2.920 (4) 156
N15—H9B⋯O9 0.86 2.14 2.946 (3) 155
N15ii—H9Aii⋯O17 0.86 2.32 3.001 (3) 136
Symmetry codes: (i) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
ππ stacking in the crystal structure of (1).
[Figure 3]
Figure 3
View of the crystal structure of (1) along [001], showing N—H⋯O and C—H⋯O hydrogen bonds drawn as blue dotted lines.
[Figure 4]
Figure 4
View of the crystal structure of (1) along [010], showing N—H⋯O and C—H⋯O hydrogen bonds drawn as blue dotted lines.

4. Void analysis

Mol­ecular surfaces can be used to quite accurately define the size and shape of a mol­ecule, and to visualize the space belonging to a mol­ecule in a crystal. To check whether the title compound is densely packed or not, a void-space analysis was performed. Based on isosurfaces of the procrystal electron density and electron-density mapping (Fig. 5[link]), we have used the conventional approach of mapping void space by rolling a probe sphere of variable radius over a fused-sphere representation to locate and visualize the void space in a crystalline material, as well as readily compute surface areas and void volumes (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]; Turner et al., 2011[Turner, M. J., McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2011). CrystEngComm, 13, 1804-1813.]). Fig. 6[link] shows the unit-cell packing for the title complex with a 0.002 a.u. void surface, and a volume of 388.80 Å3 per unit cell. This result indicates that voids occupy 10.7% of the space and, hence, the mol­ecules can be considered as densely packed in the crystal of (1).

[Figure 5]
Figure 5
The electron density map of (1) in a view along [001].
[Figure 6]
Figure 6
The void surface packing of (1) in a view along [001].

5. Database survey

The structure of the mol­ecular [La(NO3)6]3– anion was first reported by Drew et al. (1998[Drew, M. G. B., Hudson, M. J., Iveson, P. B., Russell, M. L., Liljenzin, J.-O., Sklberg, M., Spjuth, L. & Madic, C. (1998). J. Chem. Soc. Dalton Trans. pp. 2973-2980.]). A search of the Cambridge Structural Database (CSD, version 5.42, update of September 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed that there are six other reports of this moiety. One was obtained from the synthesis of a dinuclear NiII/LaIII complex containing the rare-earth metal in separate ions (Polyzou et al., 2012[Polyzou, C. D., Nikolaou, H., Papatriantafyllopoulou, C., Psycharis, V., Terzis, A., Raptopoulou, C. P., Escuer, A. & Perlepes, S. P. (2012). Dalton Trans. 41, 13755-13764.]), the second in research into materials with luminescent properties for developing new drugs (Esteban-Parra et al., 2020[Esteban-Parra, G. M., Moscoso, I., Cepeda, J., García, J. A., Sánchez-Moreno, M., Rodríguez-Diéguez, A. & Quirós, M. (2020). Eur. J. Inorg. Chem. pp. 308-317.]), the third is a lanthanum/peptide heterometallic complex with inter­esting optical properties (Bezzubov et al., 2017[Bezzubov, S. I., Bilyalova, A. A., Zharinova, I. S., Lavrova, M. A., Kiselev, Y. M. & Dolzhenko, V. D. (2017). Russ. J. Inorg. Chem. 62, 1197-1201.]), the forth was studied during synthesis and theoretical calculations at the DFT level of di-La complexes with a pendant-armed macrocycle (Fernández-Fernández et al., 2006[Fernández-Fernández, M. del C., Bastida, R., Macias, A., Pérez-Lourido, P., Platas-Iglesias, C. & Valencia, L. (2006). Inorg. Chem. 45, 4484-4496.]), the fifth is a heteronuclear nitrato lanthanide complex with inter­esting magnetic properties (Thatipamula et al., 2019[Thatipamula, K. C., Bhargavi, G. & Rajasekharan, M. V. (2019). Chem. Sel. 4, 3450-3458.]), and the sixth is a pyridine imidazolium lanthanum complex (Skelton et al., 2019[Skelton, B. W., Kokozay, V. N., Vassilyeva, O. Yu. & Buvaylo, E. A. (2019). Private communication (refcode: GOWVIA). CCDC, Cambridge, England.]). The crystal structure of the last compound comprises the anionic unit as ideal [La(NO3)6]3–, i.e. oppositely faced nitrate moieties lie co-planar to the LaIII atom, forming a paddle-wheel-shaped structure. The latter is one of the most closely related structures to (1), with the main difference being the number of cations.

6. Synthesis and crystallization

10 ml of an ethanol solution of La(NO3)3·6H2O (216.8 mg, 0.0005 mmol) was stirred at room temperature for 1 h. Then a 10 ml ethanol solution of 2-amino-1-methyl­benzimidazole (220.5 mg, 0.0015 mmol) was gradually added dropwise to the stirring mixture over 50 min at 303 K. Immediately after this, the mixture was heated in a reflux condenser at boiling temperature for 30 min. The solution was filtered and allowed to cool. The obtained yellowish single crystalline product was washed several times in pure acetone and allowed to air-dry at room temperature.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All hydrogen atoms were positioned geometrically with C—H = 0.93–0.96 Å and refined using a riding model with Uiso(H) = 1.5Ueq(C) for methyl groups and 1.2Ueq(C) for the other groups. Aromatic/amide hydrogen atoms were refined in a similar manner.

Table 3
Experimental details

Crystal data
Chemical formula (C8H10N3)3[La(NO3)6]
Mr 955.54
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 11.78754 (10), 17.59536 (14), 17.79338 (15)
β (°) 99.4928 (8)
V3) 3639.92 (5)
Z 4
Radiation type Cu Kα
μ (mm−1) 9.95
Crystal size (mm) 0.21 × 0.18 × 0.12
 
Data collection
Diffractometer XtaLAB Synergy, Single source at home/near, HyPix3000
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.281, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 21842, 7018, 6305
Rint 0.038
(sin θ/λ)max−1) 0.615
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.089, 1.05
No. of reflections 7018
No. of parameters 527
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.69, −0.73
Computer programs: CrysAlis PRO (Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2020); cell refinement: CrysAlis PRO (Rigaku OD, 2020); data reduction: CrysAlis PRO (Rigaku OD, 2020); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), Mercury (Macrae et al., 2020); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009), PLATON (Spek, 2020), publCIF (Westrip, 2010).

Tris(2-amino-1-methylbenzimidazolium) hexakis(nitrato-κ2O,O')lanthanate(III) top
Crystal data top
(C8H10N3)3[La(NO3)6]F(000) = 1920
Mr = 955.54Dx = 1.744 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 11.78754 (10) ÅCell parameters from 13771 reflections
b = 17.59536 (14) Åθ = 2.5–71.2°
c = 17.79338 (15) ŵ = 9.95 mm1
β = 99.4928 (8)°T = 293 K
V = 3639.92 (5) Å3Block, yellow
Z = 40.21 × 0.18 × 0.12 mm
Data collection top
XtaLAB Synergy, Single source at home/near, HyPix3000
diffractometer
7018 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source6305 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.038
Detector resolution: 10.0000 pixels mm-1θmax = 71.4°, θmin = 3.6°
ω scansh = 1410
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2020)
k = 2121
Tmin = 0.281, Tmax = 1.000l = 2121
21842 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.032 w = 1/[σ2(Fo2) + (0.054P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.089(Δ/σ)max = 0.002
S = 1.05Δρmax = 0.69 e Å3
7018 reflectionsΔρmin = 0.73 e Å3
527 parametersExtinction correction: SHELXL (Sheldrick, 2015a), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00063 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
La10.29343 (2)0.24596 (2)0.26399 (2)0.03257 (8)
O10.13909 (18)0.35278 (13)0.21917 (11)0.0522 (5)
O20.16522 (19)0.33582 (13)0.34071 (11)0.0586 (5)
O30.0273 (2)0.40812 (16)0.28696 (17)0.0880 (9)
O40.39500 (18)0.38018 (12)0.28782 (11)0.0498 (5)
O50.35777 (17)0.34828 (12)0.16921 (10)0.0482 (5)
O60.4493 (2)0.45295 (14)0.20134 (14)0.0794 (7)
O70.4095 (2)0.25349 (10)0.40779 (14)0.0475 (6)
O80.25431 (15)0.18594 (12)0.39370 (10)0.0487 (5)
O90.37164 (18)0.18384 (14)0.50096 (11)0.0627 (6)
O100.07926 (15)0.19647 (12)0.25603 (11)0.0484 (5)
O110.20210 (16)0.10968 (12)0.24177 (11)0.0483 (5)
O120.0197 (2)0.08323 (15)0.22181 (14)0.0737 (7)
O130.19323 (18)0.22778 (13)0.12292 (12)0.0480 (5)
O140.36267 (16)0.17855 (13)0.14595 (11)0.0530 (5)
O150.2596 (2)0.16638 (15)0.03340 (11)0.0679 (6)
O160.44669 (18)0.13478 (12)0.30224 (12)0.0528 (5)
O170.52066 (19)0.24035 (11)0.27129 (13)0.0468 (5)
O180.62845 (18)0.14095 (15)0.29585 (13)0.0683 (6)
N10.1087 (2)0.36713 (14)0.28342 (15)0.0511 (6)
N20.40091 (19)0.39556 (13)0.21858 (13)0.0460 (5)
N30.34526 (18)0.20720 (15)0.43578 (12)0.0435 (5)
N40.0971 (2)0.12845 (15)0.23923 (13)0.0453 (6)
N50.27197 (19)0.18996 (14)0.09850 (12)0.0426 (5)
N60.53406 (19)0.17059 (14)0.29008 (12)0.0449 (5)
N70.0092 (2)0.40624 (14)0.08932 (13)0.0515 (6)
H10.0299590.4012960.1343120.062*
N80.0554 (2)0.40492 (13)0.03455 (13)0.0477 (5)
N90.1321 (2)0.36555 (16)0.01938 (17)0.0666 (8)
H3A0.1817140.3588600.0600330.080*
H3B0.1504310.3562040.0245230.080*
C10.1515 (2)0.43169 (16)0.00624 (16)0.0457 (6)
C20.2576 (3)0.4554 (2)0.0427 (2)0.0644 (9)
H20.2775660.4541180.0954610.077*
C30.3333 (3)0.4813 (3)0.0036 (3)0.0831 (13)
H30.4058260.4983050.0185920.100*
C40.3035 (3)0.4826 (3)0.0817 (3)0.0828 (12)
H40.3567910.5002370.1107460.099*
C50.1968 (3)0.4584 (2)0.1188 (2)0.0645 (9)
H50.1770240.4595870.1715420.077*
C60.1216 (2)0.43237 (16)0.07252 (16)0.0458 (6)
C70.0283 (3)0.39002 (16)0.02434 (16)0.0485 (7)
C80.0481 (3)0.3937 (2)0.11461 (17)0.0681 (10)
H8A0.1234230.3836370.1425530.102*
H8B0.0015410.3514740.1197380.102*
H8C0.0176030.4387520.1343650.102*
N100.5796 (2)0.43538 (14)0.40202 (13)0.0487 (6)
H4A0.5168160.4193680.3751550.058*
N110.7521 (2)0.48326 (14)0.43189 (14)0.0476 (6)
N120.6710 (2)0.47912 (16)0.30120 (14)0.0631 (7)
H6A0.6136230.4662710.2671810.076*
H6B0.7306450.4998160.2877980.076*
C90.7153 (3)0.46337 (17)0.50060 (18)0.0475 (7)
C100.7675 (3)0.4709 (2)0.57513 (19)0.0610 (8)
H100.8409990.4911680.5880730.073*
C110.7050 (4)0.4467 (2)0.62983 (19)0.0703 (10)
H110.7368810.4513310.6810410.084*
C120.5960 (3)0.4157 (2)0.6103 (2)0.0671 (9)
H120.5569880.3997530.6488610.081*
C130.5436 (3)0.40784 (18)0.53563 (19)0.0566 (7)
H130.4703610.3871210.5227110.068*
C140.6059 (2)0.43245 (16)0.48098 (16)0.0468 (6)
C150.6674 (2)0.46703 (16)0.37422 (16)0.0468 (6)
C160.8664 (3)0.5101 (2)0.4250 (2)0.0626 (8)
H16A0.9228460.4754770.4507410.094*
H16B0.8783710.5595680.4476590.094*
H16C0.8737050.5129120.3721530.094*
N130.6355 (2)0.23763 (14)0.50237 (16)0.0445 (6)
H70.5721200.2284250.4722470.053*
N140.7613 (2)0.24800 (12)0.60674 (17)0.0454 (6)
N150.5738 (2)0.21128 (17)0.61913 (15)0.0601 (7)
H9A0.5912610.2080130.6678960.072*
H9B0.5048970.2013770.5969730.072*
C170.8178 (3)0.26746 (17)0.54597 (19)0.0428 (6)
C180.9309 (2)0.28901 (19)0.54492 (19)0.0532 (7)
H180.9851200.2919540.5891670.064*
C190.9581 (3)0.30592 (19)0.4736 (2)0.0596 (8)
H191.0327290.3206730.4699000.071*
C200.8769 (3)0.30138 (19)0.40783 (19)0.0573 (8)
H200.8982410.3137900.3613110.069*
C210.7647 (3)0.2788 (2)0.40965 (18)0.0520 (7)
H210.7103980.2755640.3654750.062*
C220.7376 (3)0.26148 (15)0.4800 (2)0.0423 (7)
C230.6521 (3)0.23136 (18)0.57861 (18)0.0447 (6)
C240.8111 (4)0.2469 (2)0.6871 (2)0.0665 (11)
H24A0.8491090.1992230.6994140.100*
H24B0.7512630.2533370.7172100.100*
H24C0.8657290.2875690.6977370.100*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
La10.02761 (11)0.04264 (11)0.02672 (11)0.00091 (5)0.00235 (7)0.00063 (5)
O10.0533 (12)0.0610 (13)0.0427 (11)0.0138 (10)0.0095 (9)0.0013 (9)
O20.0657 (13)0.0691 (14)0.0419 (11)0.0064 (11)0.0119 (10)0.0032 (10)
O30.0832 (18)0.0851 (19)0.103 (2)0.0438 (15)0.0375 (16)0.0091 (16)
O40.0563 (12)0.0531 (12)0.0378 (10)0.0101 (10)0.0015 (9)0.0034 (9)
O50.0492 (11)0.0588 (12)0.0360 (10)0.0085 (10)0.0051 (8)0.0045 (9)
O60.0942 (18)0.0657 (15)0.0731 (16)0.0359 (14)0.0013 (13)0.0180 (12)
O70.0387 (12)0.0676 (15)0.0356 (12)0.0118 (8)0.0045 (9)0.0017 (8)
O80.0391 (10)0.0704 (14)0.0345 (9)0.0124 (9)0.0006 (8)0.0021 (9)
O90.0600 (12)0.0911 (17)0.0328 (10)0.0130 (12)0.0048 (9)0.0158 (10)
O100.0362 (10)0.0572 (13)0.0513 (11)0.0035 (9)0.0059 (8)0.0069 (9)
O110.0439 (11)0.0488 (12)0.0517 (12)0.0018 (8)0.0064 (9)0.0041 (8)
O120.0621 (14)0.0842 (18)0.0775 (16)0.0371 (13)0.0193 (12)0.0255 (14)
O130.0387 (11)0.0629 (12)0.0410 (11)0.0030 (10)0.0027 (9)0.0057 (10)
O140.0379 (10)0.0772 (15)0.0426 (11)0.0085 (10)0.0027 (8)0.0074 (10)
O150.0750 (14)0.0911 (18)0.0375 (11)0.0059 (13)0.0091 (10)0.0185 (11)
O160.0480 (12)0.0536 (12)0.0560 (12)0.0014 (10)0.0067 (9)0.0066 (10)
O170.0366 (11)0.0610 (13)0.0425 (12)0.0019 (8)0.0053 (9)0.0045 (8)
O180.0436 (11)0.0835 (17)0.0754 (15)0.0232 (11)0.0027 (10)0.0033 (13)
N10.0535 (15)0.0479 (14)0.0550 (15)0.0062 (12)0.0182 (12)0.0045 (11)
N20.0436 (12)0.0445 (13)0.0481 (13)0.0035 (10)0.0023 (10)0.0034 (10)
N30.0361 (11)0.0619 (15)0.0319 (11)0.0024 (11)0.0041 (9)0.0000 (10)
N40.0435 (13)0.0570 (15)0.0357 (12)0.0119 (11)0.0073 (10)0.0055 (10)
N50.0425 (12)0.0542 (14)0.0312 (11)0.0076 (11)0.0062 (9)0.0023 (9)
N60.0398 (12)0.0600 (15)0.0330 (11)0.0067 (11)0.0006 (9)0.0030 (10)
N70.0584 (14)0.0567 (15)0.0389 (12)0.0078 (12)0.0070 (11)0.0049 (11)
N80.0585 (14)0.0471 (13)0.0398 (12)0.0029 (11)0.0149 (11)0.0002 (10)
N90.0623 (17)0.0686 (18)0.0737 (19)0.0211 (14)0.0248 (14)0.0147 (15)
C10.0516 (16)0.0414 (15)0.0452 (15)0.0024 (12)0.0106 (12)0.0032 (12)
C20.0538 (19)0.075 (2)0.062 (2)0.0026 (17)0.0007 (16)0.0021 (18)
C30.045 (2)0.097 (3)0.108 (4)0.010 (2)0.013 (2)0.002 (3)
C40.067 (2)0.092 (3)0.100 (3)0.008 (2)0.044 (2)0.003 (3)
C50.069 (2)0.073 (2)0.058 (2)0.0051 (18)0.0309 (17)0.0028 (17)
C60.0511 (16)0.0450 (15)0.0433 (15)0.0008 (13)0.0140 (12)0.0002 (12)
C70.0549 (17)0.0433 (15)0.0511 (16)0.0071 (13)0.0197 (14)0.0069 (12)
C80.099 (3)0.066 (2)0.0451 (17)0.0033 (19)0.0292 (18)0.0037 (15)
N100.0437 (12)0.0484 (14)0.0511 (14)0.0051 (11)0.0004 (10)0.0009 (11)
N110.0468 (13)0.0479 (14)0.0455 (13)0.0055 (11)0.0005 (10)0.0030 (11)
N120.0683 (17)0.0747 (19)0.0436 (14)0.0184 (15)0.0007 (12)0.0021 (13)
C90.0527 (18)0.0402 (15)0.0479 (16)0.0006 (13)0.0035 (13)0.0018 (12)
C100.064 (2)0.063 (2)0.0524 (18)0.0001 (17)0.0026 (15)0.0013 (15)
C110.097 (3)0.066 (2)0.0459 (18)0.004 (2)0.0034 (18)0.0006 (16)
C120.083 (2)0.061 (2)0.062 (2)0.0085 (19)0.0247 (19)0.0075 (16)
C130.0537 (17)0.0481 (17)0.070 (2)0.0031 (14)0.0154 (15)0.0049 (15)
C140.0499 (15)0.0374 (14)0.0521 (16)0.0049 (12)0.0059 (13)0.0008 (12)
C150.0487 (15)0.0430 (15)0.0453 (15)0.0034 (12)0.0020 (12)0.0022 (12)
C160.0466 (16)0.070 (2)0.068 (2)0.0130 (16)0.0000 (14)0.0074 (17)
N130.0280 (12)0.0551 (14)0.0482 (15)0.0019 (10)0.0003 (11)0.0078 (11)
N140.0320 (13)0.0571 (17)0.0457 (15)0.0002 (9)0.0028 (12)0.0058 (9)
N150.0407 (13)0.087 (2)0.0537 (15)0.0050 (14)0.0110 (11)0.0069 (15)
C170.0326 (14)0.0438 (14)0.0507 (17)0.0036 (12)0.0032 (12)0.0056 (13)
C180.0317 (14)0.060 (2)0.0656 (19)0.0028 (13)0.0024 (13)0.0112 (15)
C190.0440 (16)0.061 (2)0.076 (2)0.0082 (15)0.0188 (16)0.0096 (17)
C200.0565 (18)0.060 (2)0.0582 (19)0.0075 (15)0.0197 (15)0.0042 (15)
C210.0505 (17)0.0574 (18)0.0468 (17)0.0019 (15)0.0038 (13)0.0063 (14)
C220.0318 (14)0.0418 (15)0.0535 (19)0.0018 (11)0.0073 (13)0.0078 (12)
C230.0335 (15)0.0509 (15)0.0484 (17)0.0051 (13)0.0032 (12)0.0047 (13)
C240.051 (2)0.095 (3)0.049 (2)0.0038 (16)0.0054 (17)0.0030 (15)
Geometric parameters (Å, º) top
La1—O12.646 (2)C5—C61.383 (4)
La1—O22.707 (2)C8—H8A0.9600
La1—O42.650 (2)C8—H8B0.9600
La1—O52.661 (2)C8—H8C0.9600
La1—O72.699 (2)N10—H4A0.8600
La1—O82.6469 (18)N10—C141.389 (4)
La1—O102.6520 (18)N10—C151.339 (4)
La1—O112.631 (2)N11—C91.407 (4)
La1—O132.612 (2)N11—C151.339 (4)
La1—O142.6551 (19)N11—C161.452 (4)
La1—O162.674 (2)N12—H6A0.8600
La1—O172.662 (2)N12—H6B0.8600
O1—N11.278 (3)N12—C151.324 (4)
O2—N11.250 (3)C9—C101.373 (4)
O3—N11.210 (3)C9—C141.390 (4)
O4—N21.274 (3)C10—H100.9300
O5—N21.255 (3)C10—C111.381 (5)
O6—N21.223 (3)C11—H110.9300
O7—N31.269 (3)C11—C121.387 (5)
O8—N31.259 (3)C12—H120.9300
O9—N31.221 (3)C12—C131.377 (5)
O10—N41.260 (3)C13—H130.9300
O11—N41.275 (3)C13—C141.382 (4)
O12—N41.212 (3)C16—H16A0.9600
O13—N51.275 (3)C16—H16B0.9600
O14—N51.264 (3)C16—H16C0.9600
O15—N51.216 (3)N13—H70.8600
O16—N61.256 (3)N13—C221.393 (4)
O17—N61.275 (3)N13—C231.343 (4)
O18—N61.218 (3)N14—C171.403 (4)
N7—H10.8600N14—C231.335 (4)
N7—C61.387 (4)N14—C241.453 (5)
N7—C71.335 (3)N15—H9A0.8600
N8—C11.395 (3)N15—H9B0.8600
N8—C71.341 (4)N15—C231.310 (4)
N8—C81.455 (3)C17—C181.389 (4)
N9—H3A0.8600C17—C221.385 (5)
N9—H3B0.8600C18—H180.9300
N9—C71.313 (4)C18—C191.392 (4)
C1—C21.375 (4)C19—H190.9300
C1—C61.388 (4)C19—C201.386 (5)
C2—H20.9300C20—H200.9300
C2—C31.388 (5)C20—C211.386 (4)
C3—H30.9300C21—H210.9300
C3—C41.376 (6)C21—C221.376 (5)
C4—H40.9300C24—H24A0.9600
C4—C51.386 (6)C24—H24B0.9600
C5—H50.9300C24—H24C0.9600
O1—La1—O247.45 (6)H3A—N9—H3B120.0
O1—La1—O471.65 (6)C7—N9—H3A120.0
O1—La1—O565.29 (6)C7—N9—H3B120.0
O1—La1—O7117.83 (6)C2—C1—N8131.4 (3)
O1—La1—O8109.65 (6)C2—C1—C6122.2 (3)
O1—La1—O1067.42 (7)C6—C1—N8106.3 (3)
O1—La1—O14111.39 (6)C1—C2—H2121.8
O1—La1—O16177.08 (6)C1—C2—C3116.3 (4)
O1—La1—O17132.64 (6)C3—C2—H2121.8
O4—La1—O270.97 (7)C2—C3—H3119.2
O4—La1—O547.94 (6)C4—C3—C2121.5 (4)
O4—La1—O770.09 (6)C4—C3—H3119.2
O4—La1—O10134.59 (6)C3—C4—H4118.8
O4—La1—O14109.57 (6)C3—C4—C5122.4 (3)
O4—La1—O16110.05 (6)C5—C4—H4118.8
O4—La1—O1766.47 (6)C4—C5—H5122.0
O5—La1—O299.53 (7)C6—C5—C4116.1 (3)
O5—La1—O7114.50 (6)C6—C5—H5122.0
O5—La1—O16113.90 (6)N7—C6—C1106.8 (2)
O5—La1—O1770.51 (6)C5—C6—N7131.6 (3)
O7—La1—O274.41 (7)C5—C6—C1121.5 (3)
O8—La1—O266.50 (7)N7—C7—N8109.2 (2)
O8—La1—O4110.80 (6)N9—C7—N7125.0 (3)
O8—La1—O5158.64 (6)N9—C7—N8125.8 (3)
O8—La1—O747.69 (6)N8—C8—H8A109.5
O8—La1—O1067.32 (6)N8—C8—H8B109.5
O8—La1—O14129.20 (7)N8—C8—H8C109.5
O8—La1—O1672.16 (6)H8A—C8—H8B109.5
O8—La1—O17105.15 (6)H8A—C8—H8C109.5
O10—La1—O267.23 (6)H8B—C8—H8C109.5
O10—La1—O5123.81 (6)C14—N10—H4A125.3
O10—La1—O7113.34 (6)C15—N10—H4A125.3
O10—La1—O14103.01 (6)C15—N10—C14109.4 (2)
O10—La1—O16111.76 (6)C9—N11—C16125.3 (3)
O10—La1—O17158.71 (6)C15—N11—C9108.4 (2)
O11—La1—O1110.99 (6)C15—N11—C16126.2 (3)
O11—La1—O2111.06 (6)H6A—N12—H6B120.0
O11—La1—O4177.33 (6)C15—N12—H6A120.0
O11—La1—O5132.34 (6)C15—N12—H6B120.0
O11—La1—O7108.55 (6)C10—C9—N11131.5 (3)
O11—La1—O869.00 (6)C10—C9—C14122.0 (3)
O11—La1—O1047.98 (6)C14—C9—N11106.6 (3)
O11—La1—O1469.24 (6)C9—C10—H10121.8
O11—La1—O1667.30 (6)C9—C10—C11116.4 (3)
O11—La1—O17110.92 (6)C11—C10—H10121.8
O13—La1—O167.53 (7)C10—C11—H11119.2
O13—La1—O2110.77 (7)C10—C11—C12121.6 (3)
O13—La1—O4112.56 (7)C12—C11—H11119.2
O13—La1—O566.72 (7)C11—C12—H12119.0
O13—La1—O7174.63 (6)C13—C12—C11122.1 (3)
O13—La1—O8132.30 (6)C13—C12—H12119.0
O13—La1—O1068.46 (6)C12—C13—H13121.9
O13—La1—O1168.59 (7)C12—C13—C14116.2 (3)
O13—La1—O1448.26 (6)C14—C13—H13121.9
O13—La1—O16109.55 (7)N10—C14—C9106.4 (2)
O13—La1—O17109.53 (7)C13—C14—N10131.9 (3)
O14—La1—O2158.41 (7)C13—C14—C9121.7 (3)
O14—La1—O569.15 (6)N10—C15—N11109.2 (2)
O14—La1—O7126.73 (7)N12—C15—N10125.5 (3)
O14—La1—O1665.90 (7)N12—C15—N11125.2 (3)
O14—La1—O1765.41 (6)N11—C16—H16A109.5
O16—La1—O2135.15 (7)N11—C16—H16B109.5
O16—La1—O765.09 (7)N11—C16—H16C109.5
O17—La1—O2129.64 (7)H16A—C16—H16B109.5
O17—La1—O766.84 (7)H16A—C16—H16C109.5
O17—La1—O1647.80 (6)H16B—C16—H16C109.5
N1—O1—La198.69 (16)C22—N13—H7125.5
N1—O2—La196.49 (15)C23—N13—H7125.5
N2—O4—La197.46 (15)C23—N13—C22109.0 (3)
N2—O5—La197.46 (15)C17—N14—C24126.6 (3)
N3—O7—La195.65 (15)C23—N14—C17108.4 (3)
N3—O8—La198.41 (14)C23—N14—C24125.0 (3)
N4—O10—La197.48 (14)H9A—N15—H9B120.0
N4—O11—La198.06 (16)C23—N15—H9A120.0
N5—O13—La198.75 (15)C23—N15—H9B120.0
N5—O14—La196.95 (14)C18—C17—N14131.0 (3)
N6—O16—La197.36 (15)C22—C17—N14106.9 (3)
N6—O17—La197.39 (16)C22—C17—C18122.1 (3)
O2—N1—O1116.9 (2)C17—C18—H18122.1
O3—N1—O1120.4 (3)C17—C18—C19115.9 (3)
O3—N1—O2122.7 (3)C19—C18—H18122.1
O5—N2—O4117.1 (2)C18—C19—H19119.1
O6—N2—O4121.3 (2)C20—C19—C18121.8 (3)
O6—N2—O5121.6 (2)C20—C19—H19119.1
O8—N3—O7117.5 (2)C19—C20—H20119.2
O9—N3—O7120.9 (2)C19—C20—C21121.7 (3)
O9—N3—O8121.5 (2)C21—C20—H20119.2
O10—N4—O11115.9 (2)C20—C21—H21121.6
O12—N4—O10122.5 (2)C22—C21—C20116.8 (3)
O12—N4—O11121.7 (3)C22—C21—H21121.6
O14—N5—O13116.0 (2)C17—C22—N13106.4 (3)
O15—N5—O13121.5 (2)C21—C22—N13131.9 (3)
O15—N5—O14122.5 (2)C21—C22—C17121.7 (3)
O16—N6—O17117.3 (2)N14—C23—N13109.4 (3)
O18—N6—O16122.3 (3)N15—C23—N13125.4 (3)
O18—N6—O17120.4 (3)N15—C23—N14125.2 (3)
C6—N7—H1125.5N14—C24—H24A109.5
C7—N7—H1125.5N14—C24—H24B109.5
C7—N7—C6109.0 (2)N14—C24—H24C109.5
C1—N8—C8125.6 (3)H24A—C24—H24B109.5
C7—N8—C1108.7 (2)H24A—C24—H24C109.5
C7—N8—C8125.7 (3)H24B—C24—H24C109.5
La1—O1—N1—O27.3 (3)N11—C9—C10—C11178.4 (3)
La1—O1—N1—O3171.3 (3)N11—C9—C14—N100.7 (3)
La1—O2—N1—O17.1 (3)N11—C9—C14—C13179.0 (3)
La1—O2—N1—O3171.5 (3)C9—N11—C15—N102.1 (3)
La1—O4—N2—O52.2 (2)C9—N11—C15—N12179.1 (3)
La1—O4—N2—O6175.9 (2)C9—C10—C11—C120.7 (5)
La1—O5—N2—O42.2 (2)C10—C9—C14—N10178.5 (3)
La1—O5—N2—O6175.9 (2)C10—C9—C14—C130.2 (5)
La1—O7—N3—O88.4 (2)C10—C11—C12—C130.5 (6)
La1—O7—N3—O9171.0 (2)C11—C12—C13—C140.1 (5)
La1—O8—N3—O78.7 (3)C12—C13—C14—N10177.8 (3)
La1—O8—N3—O9170.7 (2)C12—C13—C14—C90.0 (4)
La1—O10—N4—O117.7 (2)C14—N10—C15—N111.7 (3)
La1—O10—N4—O12172.4 (2)C14—N10—C15—N12179.5 (3)
La1—O11—N4—O107.8 (2)C14—C9—C10—C110.6 (5)
La1—O11—N4—O12172.4 (2)C15—N10—C14—C90.6 (3)
La1—O13—N5—O142.3 (2)C15—N10—C14—C13177.5 (3)
La1—O13—N5—O15177.5 (2)C15—N11—C9—C10177.4 (3)
La1—O14—N5—O132.3 (2)C15—N11—C9—C141.7 (3)
La1—O14—N5—O15177.6 (2)C16—N11—C9—C107.8 (5)
La1—O16—N6—O174.3 (2)C16—N11—C9—C14173.1 (3)
La1—O16—N6—O18175.8 (2)C16—N11—C15—N10172.6 (3)
La1—O17—N6—O164.3 (2)C16—N11—C15—N126.2 (5)
La1—O17—N6—O18175.8 (2)N14—C17—C18—C19178.9 (3)
N8—C1—C2—C3177.9 (3)N14—C17—C22—N130.8 (3)
N8—C1—C6—N70.0 (3)N14—C17—C22—C21178.2 (3)
N8—C1—C6—C5177.9 (3)C17—N14—C23—N131.2 (3)
C1—N8—C7—N70.3 (3)C17—N14—C23—N15179.4 (3)
C1—N8—C7—N9178.4 (3)C17—C18—C19—C200.0 (5)
C1—C2—C3—C40.5 (6)C18—C17—C22—N13179.0 (3)
C2—C1—C6—N7179.1 (3)C18—C17—C22—C212.0 (4)
C2—C1—C6—C51.1 (5)C18—C19—C20—C210.8 (5)
C2—C3—C4—C50.2 (7)C19—C20—C21—C220.3 (5)
C3—C4—C5—C60.3 (6)C20—C21—C22—N13179.8 (3)
C4—C5—C6—N7178.1 (3)C20—C21—C22—C171.0 (5)
C4—C5—C6—C10.8 (5)C22—N13—C23—N141.7 (3)
C6—N7—C7—N80.3 (3)C22—N13—C23—N15178.9 (3)
C6—N7—C7—N9178.4 (3)C22—C17—C18—C191.4 (4)
C6—C1—C2—C30.9 (5)C23—N13—C22—C171.5 (3)
C7—N7—C6—C10.2 (3)C23—N13—C22—C21177.4 (3)
C7—N7—C6—C5177.8 (3)C23—N14—C17—C18180.0 (3)
C7—N8—C1—C2179.1 (3)C23—N14—C17—C220.2 (3)
C7—N8—C1—C60.1 (3)C24—N14—C17—C180.9 (5)
C8—N8—C1—C21.9 (5)C24—N14—C17—C22179.3 (3)
C8—N8—C1—C6179.1 (3)C24—N14—C23—N13179.7 (3)
C8—N8—C7—N7179.2 (3)C24—N14—C23—N150.3 (5)
C8—N8—C7—N92.7 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C21—H21···O170.932.643.530 (5)161
C24i—H24Ci···O100.962.523.348 (5)138
N7—H7···O10.862.012.819 (3)157
N10—H4A···O40.862.052.889 (3)164
N12—H6A···O60.862.102.944 (3)165
N13—H7···O70.862.112.920 (4)156
N15—H9B···O90.862.142.946 (3)155
N15ii—H9Aii···O170.862.323.001 (3)136
Symmetry codes: (i) x1, y+1/2, z1/2; (ii) x, y+1/2, z1/2.
 

Acknowledgements

The authors acknowledge support from the MIRAI FUND (JICA) and technical equipment support provided by the Institute of bioorganic chemistry of Uzbek Academy of Sciences.

Funding information

Funding for this research was provided by: Japan International Cooperation Agency.

References

First citationFernández-Fernández, M. del C., Bastida, R., Macias, A., Pérez-Lourido, P., Platas-Iglesias, C. & Valencia, L. (2006). Inorg. Chem. 45, 4484–4496.  PubMed Google Scholar
First citationBarry, D. E., Caffrey, D. F. & Gunnlaugsson, T. (2016). Chem. Soc. Rev. 45, 3244–3274.  CrossRef CAS PubMed Google Scholar
First citationBezzubov, S. I., Bilyalova, A. A., Zharinova, I. S., Lavrova, M. A., Kiselev, Y. M. & Dolzhenko, V. D. (2017). Russ. J. Inorg. Chem. 62, 1197–1201.  CSD CrossRef CAS Google Scholar
First citationChen, W., Tang, X., Dou, W., Wang, B., Guo, L., Ju, Z. & Liu, W. (2017). Chem. Eur. J. 23, 9804–9811.  CSD CrossRef CAS PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDrew, M. G. B., Hudson, M. J., Iveson, P. B., Russell, M. L., Liljenzin, J.-O., Sklberg, M., Spjuth, L. & Madic, C. (1998). J. Chem. Soc. Dalton Trans. pp. 2973–2980.  CSD CrossRef Google Scholar
First citationEliseeva, S. V. & Bünzli, J. G. (2010). Chem. Soc. Rev. 39, 189–227.  Web of Science CrossRef CAS PubMed Google Scholar
First citationEsteban-Parra, G. M., Moscoso, I., Cepeda, J., García, J. A., Sánchez–Moreno, M., Rodríguez–Diéguez, A. & Quirós, M. (2020). Eur. J. Inorg. Chem. pp. 308–317.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFowkes, A. & Harrison, W. T. A. (2006). Acta Cryst. E62, m1301–m1303.  CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPolyzou, C. D., Nikolaou, H., Papatriantafyllopoulou, C., Psycharis, V., Terzis, A., Raptopoulou, C. P., Escuer, A. & Perlepes, S. P. (2012). Dalton Trans. 41, 13755–13764.  CSD CrossRef CAS PubMed Google Scholar
First citationRigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSkelton, B. W., Kokozay, V. N., Vassilyeva, O. Yu. & Buvaylo, E. A. (2019). Private communication (refcode: GOWVIA). CCDC, Cambridge, England.  Google Scholar
First citationSkorupskii, G. & Dincă, M. (2020). J. Am. Chem. Soc. 142, 6920–6924.  CSD CrossRef CAS PubMed Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationThatipamula, K. C., Bhargavi, G. & Rajasekharan, M. V. (2019). Chem. Sel. 4, 3450–3458.  CAS Google Scholar
First citationTurner, M. J., McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2011). CrystEngComm, 13, 1804–1813.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWoodruff, D. N., Winpenny, R. E. & Layfield, R. A. (2013). Chem. Rev. 113, 5110–5148.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds